МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КЕМЕРОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

Кафедра «Безопасность жизнедеятельности»

«ПРОГНОЗИРОВАНИЕ ОПАСНЫХ ФАКТОРОВ ПОЖАРА»

Методические указания по выполнению практических и контрольных работ для студентов всех форм обучения специальность 280104 «Пожарная безопасность» направление 280100 «Безопасность жизнедеятельности»

Составители:

Д.А. Бесперстов, Ю.И. Иванов, Ю.П. Михайлов

	Рассмотрено и у	твержде	но на	заседании	кафедры	«Безопас-
ность	жизнедеятельно	сти»				
	Протокол №	OT	янва	ря 2011 г.		
		_	_ ^			
	Рекомендовано к	печати	метод	цической ко	омиссией	механиче-
	факультета					
	Протокол №	ОТ	февр	аля 2011 г		
		_ ~	- A cpb			

Методические указания по выполнению практических и контрольных работ по дисциплине «Прогнозирование опасных факторов пожара» содержат обзорный теоретический материал по расчету температурного режима внутреннего пожара, координат плоскостей давлений, расхода газа и воздуха, необходимого времени эвакуации людей, по определению температур и массовых расходов в сечениях конвективной колонки. В методических указаниях рассмотрены также основные методы математического моделирования динамики опасных факторов пожара в помещении, изменение их с учетом особенностей газообмена. Приведены типовые задачи по расчету опасных факторов пожара, даны методики и рекомендации по их решению, задания по выполнению контрольных работ и необходимые справочные данные.

СОДЕРЖАНИЕ

D
Введение
1. Общие сведения о методах прогнозирования опасных
факторов пожара
2. Методика решения задач
2.1. Определение среднеобъемной температуры внутреннего
пожара на заданный момент времени и температурных режимов пожара в помещениях
2.1.1. Расчет температурного режима внутреннего пожара
(способ 1)
2.1.2. Расчет температурного режима внутреннего пожара
(способ 2)
Пример 1. Рассчитать среднеобъемную температуру по-
жара
Пример 2. Определить температурный режим пожара в
помещении промышленного здания с учетом начальной ста
дии
2.2. Расчет координат плоскостей давлений, расхода года и
воздуха
2.2.1. Расчет координаты плоскости равных давле
ний
Пример. Определить координату плоскости равных дав
лений
2.2.2. Расчет расходов поступающего воздуха и газовой
среды удаляемой из помещения
2.3. Решение задач по расчету необходимого времени эвакуа-
ции
людей2.4. Решение задач по определению температур и массовых
расходов в сечениях конвективной колонки
Пример определения температуры и массового расхода и
пример определения температуры и массового расхода н сечении конвективной колонки
3. Задание по дисциплине
Приложения 1-5
•
Литература

ВВЕДЕНИЕ

Прогнозирование опасных факторов пожара является одной из базовых дисциплин в профессиональной подготовке выпускника, так как основы её знаний непосредственно связаны с его дальнейшей практической деятельностью, а именно, например, при разработке рекомендаций по обеспечению безопасной эвакуации людей на пожаре, совершенствовании систем сигнализации и автоматических систем пожаротушения, при разработке оперативных планов пожаротушения и для других целей. Предметом изучения дисциплины являются физические и химические процессы изменения параметров состояния газовой среды в помещении при пожаре, необходимые для практической и научной работы выпускника высшего учебного заведения. Основные задачи курса - это приобретение теоретических знаний по основам моделирования опасных факторов пожара, закономерностям изменения их во времени с учетом обстановки на внутреннем пожаре и выработке практических навыков по расчету и экспериментальному определению основных опасных факторов пожара.

Горение это основной процесс на внутреннем пожаре, является неконтролируемым и до настоящего времени еще недостаточно изученым. Поэтому изучение принципов и методов математического описания (моделирования) взаимосвязанных термогазодинамических процессов, характеризующих в целом пожар в закрытом объеме помещения, а также проведению исследований реально произошедших пожаров позволяет с большей достоверностью определить значения опасных факторов пожара.

Глубокие знания методов прогнозирования опасных факторов пожара необходимы для решения задач по обеспечению пожарной безопасности хозяйственных объектов, безопасной эвакуации людей при пожаре и успешной борьбы с пожарами. Большой вклад в моделирование процессов, происходящих на внутреннем пожаре, внесли ученые Ю.А. Кошмаров, А.В. Матюшин, С.И. Зернов, В.М. Астапенко, В.Н. Тимошенко, А.М. Рыжов, В.Л. Страхов и С.В. Пузач. Работы этих ученых по моделированию опасных факторов пожара признаны в мировой науке.

1. ОБЩИЕ СВЕДЕНИЯ О МЕТОДАХ ПРОГНОЗИРОВАНИЯ ОПАСНЫХ ФАКТОРОВ ПОЖАРА

По степени детализации описания термогазодинамических процессов, протекающих на внутреннем пожаре, можно выделить три типа математических моделей: интегральные, зонные (зональные) и полевые.

Интегральный (однозонный) метод является наиболее простым среди существующих методов моделирования пожаров. Суть интегрального метода заключается в том, что состояние газовой среды оценивается через осредненные по всему объему помещения термодинамические параметры. Соответственно температура ограждающих конструкций и другие подобные параметры оцениваются как осредненные по поверхности [1].

Однако если газовая среда характеризуется значительной неоднородностью, то информативность интегрального метода может оказаться недостаточной для решения практических задач. Подобная ситуация обычно возникает на начальной стадии пожара и при локальных пожарах, когда в помещении наблюдаются струйные течения с явно выраженными границами и, кроме того, существует достаточно четкая стратификация (расслоение) среды.

Таким образом, область применения интегрального метода, в которой предсказанные моделью параметры пожара можно интерпретировать как реальные, практически ограничивается объемными пожарами, когда из-за интенсивного перемешивания газовой среды локальные значения параметров в любой точке близки к среднеобъемным. За пределами возможностей интегрального метода оказывается моделирование пожаров, не достигших стадии объемного горения, и особенно моделирование процессов, определяющих пожарную опасность при локальном пожаре. Наконец, в ряде случаев даже при объемном пожаре распределением локальных значений параметров пренебрегать нельзя.

Более детально развитие пожара можно описать с помощью зонных (зональных) моделей, основанных на предположении о формировании в помещении двух слоев: верхнего слоя продуктов горения (задымленная зона) и нижнего слоя невозмущенного воздуха (свободная зона). Таким образом, состояние газовой среды в зональных моделях оценивается через осредненные термодинамические параметры не одной, а нескольких зон, причем межзонные границы обычно считаются подвижными.

Однако при создании зонных моделей необходимо делать большое количество упрощений и допущений, основанных на априорных предположениях о структуре потока. Такая методика не применима в тех случаях, когда отсутствует полученная из пожарных экспериментов информация об этой структуре и, следовательно, нет основы для зонного моделирования. Кроме того, часто требуется более подробная информация о пожаре, чем осредненные по слою (зоне) значения параметров [2].

Полевые модели, обозначаемые в зарубежной литературе аббревиатурой CFD (computational fluid dynamics), являются более мощным и универсальным инструментом, чем зональные; они основываются на совершенно ином принципе. Вместо одной или нескольких больших зон в полевых моделях выделяется большое количество (обычно тысячи или десятки тысяч) маленьких контрольных объемов, никак не связанных с предполагаемой структурой потока. Для каждого из этих объемов с помощью численных методов решается система уравнений в частных производных, выражающих принципы локального сохранения массы, импульса, энергии и масс компонентов. Таким образом, динамика развития процессов определяется не априорными предположениями, а исключительно результатами расчета.

2. МЕТОДИКА РЕШЕНИЯ ЗАДАЧ

2.1. Определение среднеобъемной температуры внутреннего пожара на заданный момент времени и температурных режимов пожара в помещениях

2.1.1. Расчет температурного режима внутреннего пожара (Способ 1)

Определить среднеобъемную температуру внутреннего пожара на заданный момент времени, если известны размеры помещения и проемов, характер пожарной нагрузки и место возникновения пожара.

Последовательность решения задачи

1. Произвести расчет изменения площади пожара на заданный момент времени с построением схемы развития пожара. При этом используются следующие допущения:

- пожарная нагрузка по площади пола помещения распределена равномерно;
- фронт пожара распространяется во все стороны с одинаковой скоростью;
- в первые 10 минут свободного развития пожара линейная скорость распространения пламени принимается равной половине табличного значения;
- проемы в ограждающих конструкциях располагаются симметрично;
- при достижении фронтом пожара середины оконного проема, считается, что проем вскрывается. Для дверного проема начинается воздействие пламени и отсчитывается предел огнестойкости;
- при достижении фронтом пламени ограждающих конструкций форма пожара изменяется, т.е. уточняется. Из круговой (полукруговой, сектор) переходит в прямоугольную двустороннюю или одностороннюю;
- При переходе фронта пожара в смежные помещения через проемы линейная скорость распространения пламени остается равной табличному значению.
- 2. Определить среднеобъемную температуру на заданный момент времени. Для этого необходимо:
- рассчитать площадь проемов, работающих на газообмен, F_{np} , M^2 ;
- рассчитать площадь приточной части проемов F_1 по формуле:

$$F_1 = 1/3 \sum_{n_D, M^2}$$

- вычислить отношение площади приточной части проемов (F_I) к площади пожара (F_n) в данный момент времени F_I/F_n (результат представить в виде натуральной дроби)
- вычислить значение отношения площади пожара к площади пола помещения, F_{n}/F_{nona} (результат представить в виде натуральной дроби);
- по номограмме (приложение 2) в зависимости от F_1/F_n , F_n/F_{nona} и теоретического количества воздуха необходимого для сгорания 1 кг горючего (V_B^0 , приложение 3) определить значение коэффициента избытка воздуха α ;

- рассчитать плотность теплового потока в ограждающие конструкции на данный момент времени по формуле:

$$q = \frac{\beta \cdot v_{M}^{'} \cdot Q_{\scriptscriptstyle H}^{p} \cdot F_{\scriptscriptstyle n}}{F_{\scriptscriptstyle OZD}} , \text{Bt·M}^{-2} ,$$

где eta - коэффициент недожога;

 $F_{\it ozp}$ - площадь, ограждающих конструкций,

$$\mathbf{F}_{\text{огр}} = \mathbf{F}_{\text{ст}} + \mathbf{F}_{\text{пола}} + \mathbf{F}_{\text{потолка, M}^2};$$

 F_n - площадь пожара на заданный момент времени, м²;

 $Q_{_{H}}^{p}\,$ - низшая теплота сгорания горючего, кДж·кг $^{\text{--}1}$;

 $\mathbf{U}_{\mathbf{M}}^{'}$ - приведенная массовая скорость выгорания, кг·м⁻²·с⁻¹;

Приведенная массовая скорость выгорания (\mathbf{U}_{M}) зависит от площади вскрывшихся проёмов и площади пожара. Рассчитывается по выражению:

$$\dot{v_{M}} = \frac{F_{np}}{F_{n} \cdot 0.16} \cdot v_{MM}$$

где $U_{m.m.}$ - удельная скорость выгорания, кг·м⁻²·с⁻¹ (приложение 1);

По номограмме (приложение 2) определяют значение среднеобъемной температуры t_m в зависимости от коэффициента избытка воздуха α и плотности теплового потока в ограждающие конструкции q.

2.1.2. Расчет температурного режима внутреннего пожара (Способ 2).

В формулах, используемых для решения задачи приняты следующие условные обозначения

V— объем помещения, M^3 ;

S— площадь пола помещения, M^2 ;

 A_i — площадь *i*-го проема помещения, м²;

 h_i — высота i-го проема помещения, м;

 $A = \sum A_i$ — суммарная площадь проемов помещения, M^2 ;

 $h = \frac{\sum Ah_i}{A}$ — приведенная высота проемов помещения, м;

 Π — проемность помещения, м^{0,5};

- P_i общее количество пожарной нагрузки *i*-го компонента твердых горючих и трудногорючих материалов, кг;
- q количество пожарной нагрузки, отнесенное к площади пола, $\mathrm{K}\Gamma\cdot\mathrm{M}^{-2};$
- $q_{\text{кр.к}}$ удельное критическое количество пожарной нагрузки, кг·м-2;
- q_{κ} количество пожарной нагрузки, отнесенное к площади тепловоспринимающих поверхностей помещения, кг·м-2;
 - Π_{cp} средняя скорость выгорания древесины, кг·м-²·мин⁻¹;
- Π_i средняя скорость выгорания i-го компонента твердого горючего или трудногорючего материала, кг м⁻² мин⁻¹;
 - $Q_{H_{\pi}}^{\,p}$ низшая теплота сгорания древесины, Дж·кг-¹;
- $Q_{H_i}^p$ низшая теплота сгорания \emph{i} -го компонента материала пожарной нагрузки, Дж·кг $^{-1}$;

 ε_{b} — степень черноты факела;

 T_0 — температура окружающего воздуха, К;

 T_w — температура поверхности конструкции, К;

t — текущее время развития пожара, мин;

 $t_{n.c.n}$ — минимальная продолжительность начальной стадии пожара, мин;

 $t_{\, {\rm II}}^{\, y}$ — предельная продолжительность локального пожара при горении ЛВЖ и ГЖ, мин.

Последовательность решения задачи:

- вычисляют объем помещения, V;
- рассчитывают проемность помещений Π , м 0,5 , объемом $V \leq 10$

$$\Pi = \frac{\sum A_i h_i^{0,5}}{V^{0,667}}$$

для помещений с $V > 10 \text{м}^3$

$$\Pi = \sum A_i h_i^{0.5} / S;$$

- из приложения 3 выбирают количество воздуха, необходимое для сгорания 1 кг материала i-й пожарной нагрузки V_{0i} , м³-кг⁻¹ и рассчитывают количество воздуха, необходимое для сгорания 1 кг материала пожарной нагрузки:

$$V_0 = \frac{\sum V_{0i} P_i}{\sum P_i};$$

- определяют удельное критическое количество пожарной нагрузки $\mathbf{q}_{\kappa \mathbf{p}.\kappa}$, кг·м⁻², для кубического помещения объемом V, равным объему исследуемого помещения

$$q_{\kappa p.\kappa} = \frac{4500 \Pi^3}{1 + 500 \Pi^3} + \frac{V^{0,333}}{6V_0};$$

- вычисляют удельное значение пожарной нагрузки q_{κ} кг·м⁻², для исследуемого помещения

$$q_{\kappa} = \frac{\sum P_i Q_{H_i}^p}{(6S - A)Q_{H_{II}}^p},$$

где S— площадь пола помещения, равная $\mathbf{V}^{0,667}$;

- сравнивают значения q_{κ} и $q_{\kappa p,\kappa}$. Если $q_{\kappa} < q_{\kappa p,\kappa}$, то в помещении будет пожар, регулируемый нагрузкой (ПРН); если $q_{\kappa} \ge q_{\kappa p,\kappa}$, то в помещении будет пожар, регулируемый вентиляцией (ПРВ);
- определяют максимальную среднеобъемную температуру $T_{\mbox{\scriptsize max}}$
 - а) для ПРН

$$T_{max} - T_0 = 224 \ \mathbf{q}_{K}^{0,528}$$
;

б) для ПРВ в интервале $0.15 \le t_{\Pi} \le 1.22$ ч с точностью до 8 % $T_{\max} = 1000$ °C и с точностью до 5 %:

$$T_{\text{max}} = 940e^{4,7\cdot10^{-3}(q-30)},$$

где t_n — характерная продолжительность объемного пожара, ч, рассчитываемая по формуле:

$$t_n = \frac{\sum P_i Q_{H_i}^p}{6285 A \sqrt{h}} \cdot \frac{n_{cp} \sum P_i}{\sum n_i P_i};$$

- вычисляют время достижения максимального значения среднеобъемной температуры t_{max} , мин
 - а) для ПРН

$$t_{\text{max}} = 32 - 8.1q_k^{3.2}e^{-0.92q_k}$$

б) для ПРВ

$$t_{max} = t_n$$
;

- определяют изменение среднеобъемной температуры при объемном свободно развивающемся пожаре:

$$\frac{T - T_0}{T_{\text{max}} - T_0} = 115,6 \left(\frac{t}{t_{\text{max}}}\right)^{4,75} e^{-4,75(t/t_{\text{max}})},$$

где T_0 — начальная среднеобъемная температура, °C; t — текущее время, мин.

Пример 1. Рассчитать среднеобъемную температуру пожара

Рассчитать среднеобъемную температуру пожара на момент полного охвата помещения пламенем, если пожарную нагрузку в помещении составляют мебель и бытовые изделия. Помещение

размерами 20х10х3,1 м, нахо- дится в здании 1 степени огнестойкости. Размеры оконных проёмов 1,5х1,5 м, дверных 0,9х2,1 м, предел огнестойкости дверей 0,1 ч. Пожар произошел в центре помещения.

Решение.

- 1. По таблице Приложения 1 определяем необходимые параметры пожарной нагрузки:
 - низшая теплота сгорания $Q^p_{_{\!\it H}} = 13800~_{\rm KДж \cdot K\Gamma^{-1}};$
- линейная скорость распространения пламени \mathcal{U}_I =0,0108 м·с⁻¹ = = 0,65 м·мин⁻¹;
 - удельная скорость выгорания $\mathcal{U}_{M.m.}$ = 0,01450 кг·м⁻²·c⁻¹;

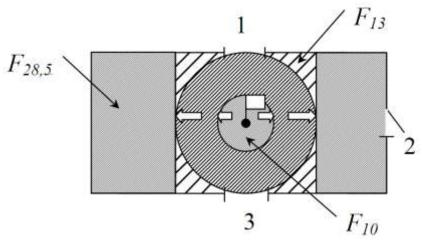


Рис. 1 Схема развития пожара

- 2. Рассчитываем площадь пожара на 15 минуте, с построением схемы развития пожара, рис. 1
 - путь, пройденный фронтом пламени за 10 минут равен:

$$\ell_{10} = 0.5 \cdot v_{\pi} \cdot 10 = 0.5 \cdot 0.65 \cdot 10 = 3.25 \text{M},$$

при этом пожар имеет круговую форму и его площадь составит:

$$F_{10} = \pi \ell_{10}^2 = 3.14 \cdot 3.25^2 = 33.1 \text{ m}^2$$
;

- расстояние до ближайших ограждающих конструкций (стены с оконными проемами) пламя пойдет за время равное:

$$\tau = \frac{5 - 3,25}{0,65} = 2,7$$
мин ≈ 3 мин (13 минута с начала пожара),

при этом вскрываются оконные проемы 1 и 3, происходит изменение формы пожара с круговой на прямоугольную двустороннюю, и площадь пожара составит:

$$F_{13} = 10 \cdot 10 = 100 \text{m}^2$$

3. Рассчитываем время охвата пламенем всего помещения и начало воздействия его на дверной проем 2, при этом путь составляет 10 м:

$$\tau = 13 + 10/0,65 = 13 + 15,4 \approx 28,5$$
 muh

Площадь пожара на 28,5 минуте составила 200 м²; Рассчитываем время вскрытия дверного проема №2 с учетом его предела огнестойкости:

$$\tau = 28.5 + 0.1 \cdot 60 = 34.5$$
мин.

При этом площадь пожара осталась не изменой.

- 4. Рассчитываем среднеобъемную температуру пожара. Предварительно определяем:
- отношение площади приточной части проёмов к площади пожара:

$$\frac{F_1}{F_n} = \frac{\frac{1}{3}(2 \cdot 1, 5 \cdot 1, 5 + 0, 9 \cdot 2, 1)}{200} = \frac{2,13}{200} = \frac{1}{94}, \text{ меньше } \frac{1}{24}, \text{ поэтому по}$$

номограмме приложения 2 принимаем пару кривых под номером 1;

- отношение площади пожара к площади пола помещения $F_n/F_{nona}=200/200=1$, поэтому из пары кривых 1 принимаем сплошную кривую для определения коэффициента избытка воздуха α ;

- по номограмме (приложе- ние 2) определяем значение коэффициента избытка воздуха $\pmb{\alpha}$ в зависимости от $V_{_{\! g}}^{^{0}}$ (приложе-

ние 3),
$$F_1/F_n$$
 и F/F_{nona} при $V_e^o = 4,2 M^3 \cdot \kappa \varepsilon^{-1}$, $\alpha = 1,8$,

Так как пожарная нагрузка аналогична древесине (приложение 1);

5. Рассчитываем тепловой поток в ограждающие конструкции, при этом :

$$F_{ocp} = F_{cm} + F_{nom} + F_{nom} = 10 \cdot 3.1 \cdot 2 + 20 \cdot 3.1 \cdot 2 + 10 \cdot 20 \cdot 2 = 586, \quad M^{2};$$

$$v_{M}^{'} = \frac{2 \cdot 1.5 \cdot 1.5 + 0.9 \cdot 2.1}{200 \cdot 0.16} \cdot 0.01450 = 0.00289, \quad \kappa_{C} \cdot M^{-2} \cdot c^{-1}$$

$$q_{34,5} = \frac{0.99 \cdot 0.00289 \cdot 13800 \cdot 200}{586} = 3.44, \quad \kappa_{Bm} \cdot M^{-2};$$

По номограмме (приложение 2) в зависимости от коэффициента избытка воздуха и теплового потока в ограждающие конструкции определяем среднеобъемную температуру внутреннего пожара на 34,5 минуте, которая равна 240°C.

Пример 2. Определить температурный режим пожара в помещении промышленного здания с учетом начальной стадии.

Данные для расчета:

Площадь пола $S=2340~{\rm m}^2$, объем помещения $V=14040~{\rm m}^3$, площадь проемов $A=167~{\rm m}^2$, высота проемов $h=2,89~{\rm m}$. Общее количество пожарной нагрузки, приведенное к древесине, составляет $4,68\cdot 10^4~{\rm kr}$, что соответствует пожарной нагрузке $q=20~{\rm kr}\cdot {\rm m}^{-2}$.

Проемность помещения:

$$\Pi = \sum A_i h_i^{0.5} / S = 167 \cdot 2,89^{0.5} / 2340 = 0,12^{0.5} M^{0.5}.$$

Количество воздуха, необходимое для сгорания 1 кг материала пожарной нагрузки:

$$V_0 = \frac{\sum V_{0i} P_i}{\sum P_i} = \frac{4.2 \cdot 4.68 \cdot 10^4}{4.68 \cdot 10^4} = 4.2 \ \text{M}^3 \cdot \text{Ke}^{-1}$$

Удельное критическое количество пожарной нагрузки:

$$\begin{split} q_{_{\text{KP},K}} &= \frac{4500\Pi^3}{1+500\Pi^3} + \frac{V^{0,333}}{6V_0} = \frac{4500 \cdot 0,\! 12^3}{1+500 \cdot 0,\! 12^3} + \frac{14040^{0,333}}{6 \cdot 4,\! 2} \\ q_{_{\text{KP},K}} &= \! 5,\! 16 \; \text{KeV} \cdot \text{M}^{-2}. \end{split}$$

Удельное количество пожарной нагрузки:

$$q_k = \frac{\sum P_i \cdot Q_{H_i}^p}{(6S - A)Q_{H_g}^p} = \frac{4,68 \cdot 10^4 \cdot 13,8}{(6 \cdot 14040^{0.667} - 167) \cdot 13,8} = 14 \kappa_{\mathcal{E} \cdot \mathcal{M}^{-2}}.$$

Из сравнения q_{κ} и $q_{\kappa p,\kappa}$ получается, что $q_{\kappa}=14>q_{\kappa p,\kappa}=5,16$

Следовательно, в помещении будет пожар, регулируемый вентилящей.

Максимальная среднеобъемная температура на стадии объемного пожара:

$$T_{\text{max}} = 940e^{4,7\cdot10^{-3(q-30)}} = 940e^{4,7\cdot10^{-3(20-30)}} = 897 \,^{\circ}K.$$

Характерная продолжительность пожара:

$$t_{_{\rm II}} = \frac{\sum P_{_{\rm i}} \cdot Q_{\rm H_{_{\rm i}}}^p}{6285 A \sqrt{h}} \cdot \frac{n_{_{cp}} \sum P_{_{\rm i}}}{\sum n_{_{\rm i}} \cdot P_{_{\rm i}}} = \frac{4,68 \cdot 10^4 \cdot 13,8}{6285 \cdot 167 \sqrt{2,89}} \cdot \frac{2,4 \cdot 4,68 \cdot 10^4}{2,4 \cdot 4,68 \cdot 10^4} = 0,4 \ \textit{y}$$

Время достижения мак- симальной среднеобъемной температуры:

$$t_{max} = t_n = 24$$
 мин.

Изменение среднеобъемной температуры при объемном свободно развивающемся пожаре:

$$T - T_0 = (T_{\text{max}} - T_0) \cdot 115,6 \cdot \left(\frac{t}{t_{\text{max}}}\right)^{4,75} \cdot e^{-4,75(t/t_{\text{max}})};$$

$$T - 293 = (897 - 293)115,6 \left(\frac{t}{24}\right)^{4,75} e^{-4,75(t/24)} = 1,9 \cdot 10^{-2} \cdot \frac{t^{4,75}}{e^{4,75t/24}}$$

Изменение среднеобъемной температуры при пожаре с учетом начальной стадии пожара в помещении объемом $V=14040~{\rm M}^3$, проемностью $\varPi=0,12~{\rm M}^{0,5}$, с пожарной нагрузкой, приведенной к древесине в количестве $20~{\rm kr}\cdot{\rm M}^{-2}$, представлено на рис.

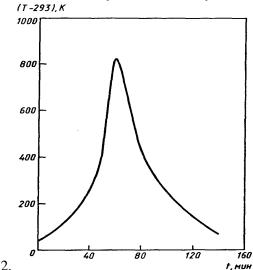


Рис. 2 Изменение среднеобъемной температуры по времени с учетом начальной стадии пожара.

2.2. Расчет координат плоскостей давлений, расхода газа и воздуха

2.2.1. Расчет координаты плоскости равных давлений.

Определить координату плоскости равных давлений (ПРД), если в центре помещения с дверным проемом произошел пожар.

Последовательность решения задачи

- 1. Определяем значение удельной газовой постоянной R, Дж·кг $^{-1}$ ·К $^{-1}$:
- а) если **не известен** количественный состав газовой среды (продуктов горения) значение R принимается для азота;
- б) если **известен** количественный состав газовой среды (продуктов горения) значение R рассчитывается по формуле:

$$R = 8314 / \mu c M$$
,

где μ_{CM} - относительная молекулярная масса смеси (кажущаяся), кг \cdot кмоль $^{-1}$;

$$\mu_{CM} = \sum_{i=1}^{n} \mu_i \cdot r_i,$$

где r_i – объемная доля i-го продукта горения в газовой среде.

- 2. Определяем значения плотности атмосферного воздуха ρ_a и среднеобъемной плотности газовой среды ρ_m в зависимости от температур, соответственно T_a и T_m по табличным значениям, используя метод линейной интерполяции (приложение 5).
- 3. Рассчитываем среднеобъемное давление газовой среды в помещении P_m по формуле:

$$P_m = \rho_m \cdot T_m \cdot R$$

4. Рассчитываем координату ПРД по формуле:

$$y_* = h - \frac{P_m - P_a}{g(\rho_a - \rho_m)}$$

Пример. Определение координаты плоскости равных давлений

Определить координату плоскости равных давлений, если в центре помещения с дверным проемом произошел пожар. Данные для расчета: температура наружного воздуха (начальная) 25 0 C, температура пожара 75 0 C.

Определяем значение удельной газовой постоянной. Так как количественный состав не известен, принимаем значение R по азоту (приложение 4):

$$R=296.8 \, \text{Дж-кг}^{-1} \cdot \text{K}^{-1}$$

Определяем значение плотности атмосферного давления и среднеобъёмной плотности среды, используя табличные данные зависимости плотностей от температуры (приложение 5). Для этого используем метод линейной интерполяции:

$$\begin{array}{ll} t_1 = 0 ^{\circ}C & \rho_1 = 1,293 (\text{ke}\cdot\text{m}^{-3}) \\ t_2 = 25 ^{\circ}C & \rho_a = X \\ t_3 = 100 ^{\circ}C & \rho_3 = 0,943 (\text{ke}\cdot\text{m}^{-3}) \\ \rho_a = 1,293 + \frac{(0,943 - 1,293) \cdot (25 - 0)}{100 - 0} = 1,2055 \ (\text{ke}\cdot\text{m}^{-3}) \\ t_1 = 0 ^{\circ}C & \rho_1 = 1,31 (\text{ke}\cdot\text{m}^{-3}) \\ t_2 = 75 ^{\circ}C & \rho_m = X \\ t_3 = 100 ^{\circ}C & \rho_3 = 0,96 (\text{ke}\cdot\text{m}^{-3}) \\ \rho_m = 1,31 + \frac{(0,96 - 1,31) \cdot (75 - 0)}{100 - 0} = 1,0475 (\text{ke}\cdot\text{m}^{-3}) \end{array}$$

Рассчитываем среднеобъёмное давление газовой среды в помещении $P_{\ m}$ по формуле:

$$P_m = \rho_m \cdot T_m \cdot R = 1,0475 \cdot (273 + 75) \cdot 296,8 = 108,192 (\kappa \Pi a)$$

Определяем координату ПРД:

$$y_* = 2,25 - \frac{108,192 - 101,325}{9,8 \cdot (1,2055 - 1,0475)} = 0,26 (M)$$

2.2.2. Расчет расходов поступающего воздуха и газовой среды удаляемой из помещения

Расход воздуха через весь проем, который лежит ниже ПРД в пределах от $y = y_{\rm B}$ до $y = y_{\rm H}$ (рис 3) определяется по следующей формуле (режим всасывания $y_* \ge y_{\rm Bi}$):

$$G_{B} = \frac{2}{3} b \sqrt{2g\rho_{a}(\rho_{a} - \rho_{m})} \left[(y_{*} - y_{H})^{\frac{3}{2}} - (y_{*} - y_{B})^{\frac{3}{2}} \right]$$

В случае, когда проем работает в смешанном режиме, формула для расчета воздуха в пределах от $y=y_*$: до $y=y_{\rm H}$ имеет вид ($y_{\rm Hi} < y_* < y_{\rm Bi}$):

$$G_{B} = \frac{2}{3}b\sqrt{2g\rho_{a}(\rho_{a} - \rho_{m})}(y_{*} - y_{H})^{\frac{3}{2}}$$

Формула для расчета расхода газа через проем при условии, когда $y_{\scriptscriptstyle H} > y_{\scriptscriptstyle *}$ (режим выталкивания):

$$G_{\Gamma} = \frac{2}{3} b \sqrt{2g \rho_m (\rho_a - \rho_m)} \left[(y_B - y_*)^{\frac{3}{2}} - (y_H - y_*)^{\frac{3}{2}} \right]$$

Формула для расчета расхода уходящих газов через проем при cмешанном режиме его работы, имеет следующий вид ($y_{\text{H}i} < y_* < y_{\text{B}i}$):

$$G_{\Gamma} = \frac{2}{3} b \sqrt{2g\rho_{m}(\rho_{a} - \rho_{m})} (y_{B} - y_{*})^{\frac{3}{2}}$$

Полные расходы уходящих газов и поступающего воздуха в случае, когда помещение имеет несколько разных (по размерам и расположению) проемов, определяются путем суммирования расходов через каждый взятый в отдельности проем:

$$G_B = \sum_{i=1}^{i=z} G_{Bi}$$
, $G_{\Gamma} = \sum_{i=1}^{i=z} G_{\Gamma i}$

где: z - число проемов;

 G_{Bi} - расход воздуха, поступающего через i-й проем;

 $G_{\Gamma i}$ - расход газовой среды, удаляемой через i-й проем.

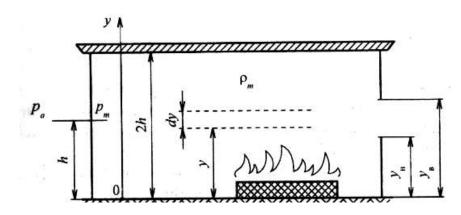


Рис 3. Схема помещения

Условные обозначения:

b - ширина проема, м

0у - координатная ось с началом отсчета на поверхности пола;

2h - высота помещения, м;

у - координата, отсчитываемая от плоскости пола, м;

dy - расстояние между двумя параллельными близко расположенными горизонтальными плоскостями, м;

 $y_{\rm H}$ - координата нижнего края проема, м;

 $y_{\text{в}}$ - координата верхнего края проема, м;

 ρ_m - среднеобъемная плотность среды внутри помещения, кг·м⁻³;

 p_a - наружное давление в окружающей атмосфере на высоте, равной половине высоты помещения, $\mathbf{H} \cdot \mathbf{m}^{-2}$;

 p_m - среднеобъемное давление, $H \cdot M^{-2}$

 $p_{\text{вн}}$ - давление внутри помещения, $\text{H}\cdot\text{m}^2$;

 ho_m - среднеобъемная плотность газовой среды в помещении, кг·м 3

у - координата ПРД

2.3. Решение задач по расчету необходимого времени эвакуации

Расчет необходимого времени эвакуации $t_{\rm H6}$ производится для наиболее опасного варианта развития пожара, характеризующегося наибольшим темпом нарастания ОФП в рассматриваемом помещении. Сначала рассчитывают значения критической продолжительности пожара ($t_{\rm kp.c}$) по условию достижения каждым из ОФП предельно допустимых значений в зоне пребывания людей (рабочей зоне):

по повышенной температуре

$$t_{pp}^{T} = \left\{ \frac{B}{A} \cdot \ln \left[1 + \frac{70 - t_{0}}{(273 + t_{0}) \cdot z} \right] \right\}^{1/n}, B = \frac{353 \cdot C_{p} \cdot V_{cB}}{(1 - \lambda) \cdot \eta \cdot Q},$$

по потере видимости

$$t_{\kappa p}^{ne} = \left\{ \frac{B}{A} \cdot \ln \left[1 - \frac{V_{ce} \cdot \ln(1,05 \cdot \alpha \cdot E)}{l_{np} \cdot B \cdot D_m \cdot Z} \right]^{-1} \right\}^{1/n},$$

по пониженному содержанию кислорода

$$t_{sp}^{O2} = \left\{ \frac{B}{A} \cdot \ln \left[1 - \frac{0,044}{(\frac{B \cdot L_{O2}}{V_{cs}} + 0,27) \cdot Z} \right]^{-1} \right\}^{1/n},$$

по каждому из газообразных токсичных продуктов горения

$$t_{sp}^{T.II.} = \left\{ \frac{B}{A} \cdot \ln \left[1 - \frac{V_{cs} \cdot X}{B \cdot L \cdot Z} \right]^{-1} \right\}^{1/n} ,$$

где B — размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения, кг;

t₀ — начальная температура воздуха в помещении, °С;

n — показатель степени, учитывающий изменение массы выгорающего материала во времени;

A — размерный параметр, учитывающий удельную массовую скорость выгорания горючего материала и площадь пожара, $\kappa \Gamma \cdot c^{-1}$:

Z — безразмерный параметр, учитывающий неравномерность распределения ОФП по высоте помещения;

Q — низшая теплота сгорания материала, $M \bot \text{ж} \cdot \text{кr}^{-1}$;

 C_p — удельная изобарная теплоемкость газа МДж кг $^{-1}$ (C_p =0,001068 МДж кг $^{-1}$);

 λ — коэффициент теплопотерь (λ =0,25);

 η — коэффициент полноты горения (η =0,51);

 V_{cB} — свободный объем помещения, $M^3(V_{cB}=0.8 \cdot V)$;

V — объем помещения, M^3 ;

 α — коэффициент отражения предметов на путях эвакуации;

Е — начальная освещенность, лк;

 l_{np} — предельная дальность видимости в дыму, м;

 D_{m}^{-} — дымообразующая способность горящего материала, Нп м 2 кг $^{-1}$:

L — удельный выход токсичных газов при сгорании 1 кг материала, кг · кг · ;

X — предельно допустимое содержание токсичного газа в помещении, кг·м $^{-3}$ ($X_{\rm CO2}$ =0,11 кг·м $^{-3}$; $X_{\rm CO}$ = 1,16·10 $^{-3}$ кг·м $^{-3}$; $X_{\rm HCL}$ =23·10 $^{-6}$ кг·м $^{-3}$);

 L_{02} — удельный расход кислорода, кг \cdot кг $^{-1}$.

Если под знаком логарифма получается отрицательное число, то данный $О\Phi\Pi$ не представляет опасности.

Параметр **Z** вычисляют по формуле:

$$Z = \frac{h}{H} \cdot \exp\left(1.4 \cdot \frac{h}{H}\right)$$
, при $H \le 6$ м,

где h — высота рабочей зоны, м;

Н — высота помещения, м.

Высота рабочей зоны определяется по формуле:

$$h = h_{\pi\pi} + 1.7 - 0.5 \cdot \delta$$
,

где $h_{\text{пл}}$ — высота площадки, на которой находятся люди, над полом помещения, м;

 δ — разность высот пола, равная нулю при горизонтальном его расположении, м.

Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому, например, при определении необходимого времени эвакуации людей из партера зрительного зала с наклонным полом значение h следует находить, ориентируясь на наиболее высоко расположенные ряды кресел.

Параметры А и п вычисляют так:

- для случая горения жидкости с установившейся скоростью $A = \psi_F \cdot F, \, n = 1,$

где ψ_F — удельная массовая скорость выгорания жидкости, $\kappa_{\Gamma^*M}^{-2} \cdot c^{-1}$;

- для кругового распространения пожара

$$A = 1.05 \cdot \psi_F \cdot v^2, n = 3,$$

где v — линейная скорость распространения пламени, м \cdot с $^{-1}$.

Для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени (например распространение огня в горизонтальном направлении по занавесу после охвата его пламенем по всей высоте)

$$A = \psi_F \cdot v \cdot b, n = 2,$$

где b — перпендикулярный к направлению движения пламени размер зоны горения, м.

При отсутствии специальных требований значения α и E принимаются равными 0,3 и 50 лк соответственно, а значение 1_{nn} =20 м.

Исходные данные для проведения расчетов могут быть взяты из справочной литературы (Приложение 1).

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное

$$t_{kp} = \min \{ t_{kp}^{m}, t_{kp}^{ns}, t_{kp}^{O2}, t_{kp}^{T.\Gamma.} \}$$

Необходимое время эвакуации людей $t_{\text{нб}}$, мин, из рассматриваемого помещения рассчитывают по формуле

$$t_{_{\rm H}\bar{\rm 0}} = \frac{0.8 \cdot t_{_{\rm KP}}}{60}$$

При расположении людей на различных по высоте площадках необходимое время эвакуации следует определять для каждой плошадки.

Пример. Определение необходимого времени эвакуации людей

Определить необходимое время эвакуации людей из помещения производственного назначения, цех деревообработки. Длина помещения 10 метров, ширина 5 метров, высота 6 метров. Начальная температура в помещении 25° С. Причина пожара — пролив легковоспламеняющейся жидкости по центру помещения. Круговое распространение пожара.

Сначала рассчитывают критическую продолжительность пожара по условию достижения каждым из опасных факторов пожара предельно допустимых значений в зоне пребывания людей.

Предварительно рассчитается размерный параметр, учитывающий удельную массовую скорость выгорания горючего материала A, размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения B, безразмерный параметр Z, учитывающий неравномерность распределения опасных факторов пожара по высоте помещения:

$$A = 1.05 \cdot \Psi_f \cdot V_{\text{лин}}^2 = 1,05 \cdot 0,0145 \cdot 0,022^2 = 7,4 \cdot 10^{-6}$$

$$B = \frac{353 \cdot C_{p} \cdot V_{cB}}{(1 - \lambda) \cdot \eta \cdot Q} = (353 \cdot 0.001068 \cdot 240) / ((1 - 0.25) \cdot 0.51 \cdot 13.8) = 17.141$$

$$Z = \frac{h}{H} \exp\left(1.4 \frac{h}{H}\right) = (1,7/6) \cdot \exp(1,4 \cdot (1,7/6)) = 0,421$$

По повышенной температуре:

$$\mathbf{t}_{_{\mathbf{k}p}}^{^{m}} = \left\{ \frac{B}{A} \ln \left[1 + \frac{70 - t_{_{o}}}{\left(273 + t_{_{o}} \right) \cdot \mathbf{Z}} \right] \right\}^{\frac{\gamma_{_{o}}}{2}} = 89 \ c = 1,49 \ \text{мин};$$

По потере видимости:

$$t_{\text{кp}}^{\text{п.в.}} = \left\{ \frac{B}{A} \ln \left[1 - \frac{V_{\text{cB}} \cdot \ln(1.05 \cdot a \cdot E)}{l_{\text{пp}} \cdot B \cdot D_{\text{m}} \cdot Z} \right]^{-1} \right\}^{\frac{1}{n}} = 58 \text{ c} = 0,97 \text{ мин;}$$

По пониженному содержанию кислорода:

$$t_{\kappa p}^{O_2} = \left\{ \frac{B}{A} \cdot ln \left[1 - \frac{0,044}{(\frac{B \cdot L_{O_2}}{V_{_{CB}}} + 0,27)} \right]^{-1} \right\}^{1/n} = 94 \text{ c} = 1,56 \text{ мин;}$$

По каждому из газообразных токсичных продуктов горения:

$$t_{\text{кp}}^{\text{CO}} = \left\{ \frac{B}{A} ln \Bigg[1 - \frac{V_{\text{cB}} \cdot X}{B \cdot L_{T} \cdot Z} \Bigg]^{-1} \right\}^{\frac{1}{N_{n}}} = \text{не опасно, по содержанию CO}_{2} \\ = \text{не опасно, по содержанию CO}_{2} \\ = \text{не опасно, по содержанию HCl}$$

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное:

$$t_{\rm kp} = 0.97$$
 мин (по потере видимости).

Необходимое время эвакуации людей составит:

$$t_{\text{нб}} = 0.8 \cdot 58/60 = 0.77$$
мин.

2.4. Решение задач по определению температур и массовых расходов в сечениях конвективной колонки

Для определения температур и массовых расходов в сечениях конвективной колонки можно использовать формулы:

$$T = T_0 + \frac{Q_{\text{пож}}(1-x)}{c_p G} ,$$

$$G = 0.21 \left[\frac{g p_0^2 Q_{\text{пож}}}{c_p T_0} (1-x) \right]^{\frac{1}{3}} (y+y_0)^{\frac{5}{3}} ,$$

где $Q_{noж}$ - скорость тепловыделения, Вт; $Q_{noж} = \eta \psi Q_H^p = \eta \psi_{ya} Q_H^p F_\Gamma$ Q^p_H - низшая теплота сгорания, Дж·кг⁻¹; ψ_{yo} - удельная скорость выгорания, кг·м⁻²·с⁻¹; g -ускорение свободного падения, м·с⁻²; T_o и ρ_0 - температура и плотность холодного (окружающего) воздуха; G - расход газов через сечение струи, отстоящее от поверхности горения на расстояние y,кг·с⁻¹; c_p - изобарная теплоемкость газа,

Дж·кг
$$^{\text{-1}}$$
·К $^{\text{-1}}$; $\chi = \frac{Q_{W1}}{Q_{\text{пож}}}$ - доля, приходящаяся на поступающую в

ограждение теплоту от выделившейся в очаге горения; y - координата сечения колонки, отсчитываемая от поверхности горения, м; y_0 - расстояние от фиктивного источника тепла до поверхности горения, м. Основные показатели приведены в Приложении 1.

С помощью вышеприведенных формул можно рассчитать расход газа из I зоны, поступающего во II зону, и его температуру. Для этого нужно положить координату y в вышеприведенных формулах равной координате нижней границы припотолочного слоя y_{κ} (см. лекции).

Расстояние от фиктивного источника тепла до поверхности горения вычисляется по формуле:

$$y_0 = 1.5\sqrt{F_{\Gamma}}$$

где F_{Γ} - площадь пожара, м².

Пример. Определение температуры и массового расхода в сечении конвективной колонки

Определить температуру и массовый расход в сечении конвективной колонки, если в помещении с размерами указанными в таблице, пожар распространился на площади. Координата сечения колонки на 0,5 метра ниже высоты помещения.

$$\eta$$
=1; c_p =103 Дж·кг⁻¹·К⁻¹; p_0 =300/ T_0 кг·К·м³; χ =0,6

Размер поме-	Пожарная	Площадь	Температура наружного воздуха, 0 С
щения, м	нагрузка	пожара, м ²	
8x18x3	Библиотека	3	20

$$Q_{\text{пож}} = \eta \psi Q_H^p = \eta \psi_{\text{v.t}} Q_H^p F_{\Gamma} = 1 \cdot 0.011 \cdot 14500000 \cdot 3 = 478500 \text{ Bt;}$$

$$y_0 = 1.5\sqrt{F_{\Gamma}} = 1.5\sqrt{3} = 2.6 \text{m};$$

$$G = 0.2I \left[\frac{gp_0^2 Q_{nose}}{c_p T_0} (1 - x) \right]^{\frac{1}{3}} (y + y_0)^{\frac{5}{3}} =$$

$$= 0.2I \left[\frac{9.81 \cdot (300/20)^2 \cdot 478500}{103 \cdot 20} (1 - 0.6) \right]^{\frac{1}{3}} (2.5 + 2.6)^{\frac{5}{3}} = 187.13 \kappa z \cdot c^{-1}$$

$$T = T_0 + \frac{Q_{nosc}(1-X)}{c_n G} = 20 + \frac{478500 \cdot (1-0.6)}{103 \cdot 187.13} = 30.12^{0} C$$

3. Задание по дисциплине «Прогнозирование опасных факторов пожара»

- 1. Необходимо письменно решить задачи по расчету температурного режима внутреннего пожара, координат плоскостей давлений, расхода газа и воздуха, необходимого времени эвакуации людей, по определению температур и массовых расходов в сечениях конвективной колонки оформив их в соответствии с Методическими указаниями. Порядок присвоения задания изложен в условиях задач по темам.
- 2. Необходимо письменно ответить на вопросы по темам, исходя из того, что номер варианта равен последнему номеру зачетной книжки.

Решения и ответы должны быть оформлены на бумажном носителе, выполнены на персональном компьютере.

Шрифт: Times New Roman. Размер шрифта: 12.

Задачи:

- 1. Определить среднеобъемную температуру при пожаре в помещении на момент полного охвата помещения, а также среднеобъемную температуру при пожаре с учетом начальной стадии. В помещении имеется дверной проем, расположенный по центру меньшей стены. Место возникновения пожара центр помещения, пожарная нагрузка расположена равномерно по помещению. Определить время наступления предельных значений ОФП по температуре и дыму, если дверной проем закрыт. Пожарная нагрузка V_i =100 кг. Температура окружающего воздуха T_0 =293 К.
- **2.** Определить (для каждой температуры пожара) координату плоскости равных давлений, а также расходы поступающего воздуха и удаляемой газовой среды, если в центре помещения с дверным проемом произошел пожар. Данные для расчета: Атмосферное давление нормальное. Температура наружного воздуха (начальная) $20~^{0}$ С, температура пожара: а) равна температуре во время заполнения всего помещения; б) равна максимальной среднеобъемной температуре (но не выше $1000~^{0}$ С). В помещении имеется дверной проем, расположенный по центру меньшей стены.

- **3.** Определить необходимое время эвакуации людей из помещения. Причина пожара пролив легковоспламеняющейся жидкости по центру помещения. Круговое распространение пожара.
- **4.** Определить температуру и массовый расход в сечении конвективной колонки, если в помещении пожар распространился на площади. Координата сечения колонки на 0,5 метра ниже высоты помещения.

Исходные данные для решения задач:

Номер вариан- та	Размер поме- щения, м	Размер проема, м	Предел огнестой- кости дверного проема, ч	Время, мин	Коорди- ната нижнего края проема, м	Площадь пожара, м ²	Начальная температура в помещении, ^о С	Температура наружного воздуха, °C
1	10x20x3	1,5x2	0,2	15	0,15	1	21	21
2	15x30x3,5	1,2x2,1	0,25	5	0,2	2	22	22
3	20x25x4	1,6x2,2	0,15	20	0,25	3	23	23
4	35x20x5	1,4x2	0,1	10	0,3	4	24	24
5	10x35x3,2	1,5x2,5	0,5	20	0,2	5	25	25
6	25x15x3	1,7x2,1	0,3	5	0,1	6	26	26
7	27x17x3,2	1,4x2	0,4	7	0,13	7	27	27
8	28x19x3,3	1,3x2,1	0,5	8	0,16	8	28	28
9	30x22x3,4	1,5x2,2	0,35	9	0,18	9	29	29
0	31x24x3,5	1,5x2	0,1	11	0,23	10	30	30

Порядок присвоения задания для задач и ответов на вопросы:

Номер варианта задачи выбирается по последней цифре зачетной книжки. Наименование пожарной нагрузки согласно номеру п/п «Параметры пожарной нагрузки для жилых и нежилых помещений зданий и сооружений» (Приложение 1) по предпоследней цифре номера зачетной книжки. Номер варианта при ответе на вопросы выбирается по последней цифре номера зачетной книжки.

Письменные вопросы по теме: Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях

Вариант 1

- 1. Первичные опасные факторы пожара.
- 2. Понятие и физические величины пламени.
- 3. Методы прогнозирования динамики ОФП и их особенности.

Вариант 2

- 1. Понятие дыма и его характеристики.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Раскройте сущность динамики ОФП.

Вариант 3

- 1. Цели прогнозирования ОФП.
- 2. Вторичные опасные факторы пожара.
- 3. Повышенная температура как ОФП.

Вариант 4

- 1. Параметры состояния газовой среды в помещении.
- 2. Пониженная концентрация кислорода как ОФП.
- 3. Раскройте сущность динамики ОФП.

Вариант 5

- 1. Первичные опасные факторы пожара.
- 2. Понятие и физические величины пламени.
- 3. Методы прогнозирования динамики ОФП и их особенности.

Вариант 6

- 1. Понятие дыма и его характеристики.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Раскройте сущность динамики ОФП.

Вариант 7

- 1. Цели прогнозирования ОФП.
- 2. Вторичные опасные факторы пожара.
- 3. Повышенная температура как ОФП.

- 1. Параметры состояния газо- вой среды в помещении.
- 2. Пониженная концентрация кислорода как ОФП.
- 3. Раскройте сущность динамики ОФП.

- 1. Первичные опасные факторы пожара.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Повышенная температура как ОФП.

Вариант 0

- 1. Параметры состояния газовой среды в помещении.
- 2. Понятие и физические величины пламени.
- 3. Раскройте сущность динамики ОФП.

Письменные вопросы по теме: Основные понятия и уравнения интегральной математической модели пожара в помещении

Вариант 1

- 1. Опасные факторы пожара.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Среднемассовая температура, определение, формула.
- 4. Понятие и физические величины пламени.
- 5. Сущность и проявление вторичных ОФП.

Вариант 2

- 1. Понятие дыма и его характеристики.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Раскройте сущность динамики ОФП.
- 4. Токсичные продукты горения, как ОФП.
- 5. Современные научные методы прогнозирования ОФП.

- 1. Сущность интегральной математической модели пожара в помещении.
- 2. Среднеобъемная плотность (концентрация) дыма, определение, формула.

- 3. Среднемассовая температу- ра, определение, формула.
- 4. Раскройте сущность динамики ОФП.
- 5. Взаимосвязь среднеобъемной и среднемассовой температур.

- 1. Среднеобъемная плотность газовой среды, определение, формула.
- 2. Оптическое количество дыма, определение, формула.
- 3. Термодинамические величины, описывающие газовую среду в помещении.
- 4. Понятие и физические величины пламени.
- 5. Предельно допустимые значения ОФП, физический смысл.

Вариант 5

- 1. Основные допущения интегральной математической модели пожара в помещении.
- 2. Среднеобъемная температура, определение, формула.
- 3. Среднеобъемная оптическая плотность дыма, определение, формула.
- 4. Пониженная концентрация кислорода, как опасный фактор пожара.
- 5. Сущность и проявление вторичных ОФП.

Вариант 6

- 1. Опасные факторы пожара.
- 2. Среднеобъемная температура, определение, формула.
- 3. Понятие и физические величины пламени.
- 4. Среднеобъемная (удельная) внутренняя энергия, определение, формула.
- 5. Дымообразующая способность горючего материала, определение, формула.

- 1. Сущность и проявление вторичных ОФП.
- 2. Понятие и физические величины пламени.
- 3. Среднемассовая температура, определение, формула.
- 4. Токсичные продукты горения, понятия и физические величины.
- 5. Опасные факторы пожара.

- 1. Понятие дыма и его характеристики.
- 2. Среднеобъемная плотность (концентрация) дыма, определение, формула.
- 3. Термодинамические величины, описывающие газовую среду в помещении.
- 4. Пониженная концентрация кислорода, как опасный фактор пожара.
- 5. Дымообразующая способность горючего материала, определение, формула.

Вариант 9

- 1. Сущность интегральной математической модели пожара в помещении.
- 2. Оптическое количество дыма, определение, формула.
- 3. Среднеобъемная оптическая плотность дыма, определение, формула.
- 4. Среднеобъемная (удельная) внутренняя энергия, определение, формула.
- 5. Сущность и проявление вторичных ОФП.

Вариант 0

- 1. Основные допущения интегральной математической модели пожара в помещении.
- 2. Токсичные продукты горения, понятия и физические величины.
- 3. Раскройте сущность динамики ОФП.
- 4. Раскройте сущность динамики ОФП.
- 5. Предельно допустимые значения ОФП, физический смысл.

Письменные вопросы по теме: Газообмен в помещении и теплофизические функции, необходимые для описания замкнутого пожара

- 1. Формулировка закона распределения наружных давлений по высоте (аналитическая запись).
- 2. Раскрыть особенности режимов работы проемов.
- 3. Уравнение материального баланса на внутреннем пожаре. Вариант 2

- 1. Формулировка закона рас- пределения внутренних давлений по высоте помещения (аналитическая запись).
- 2. Плоскость равных давлений (ПРД), определение.
- 3. Опасные факторы пожара.

- 1. Раскрыть особенности режимов работы проемов.
- 2. Уравнение энергии внутреннего пожара.
- 3. Динамика ОФП.

Вариант 4

- 1. Формула для определения скорости газа, физический смысл, величины с нее входящие.
- 2. Уравнение энергии внутреннего пожара.
- 3. Понятие дыма и его характеристики.

Вариант 5

- 1. Формула для определения расхода газа через прямоугольный проем физический смысл, величины в нее входящие.
- 2. Понятие и физические величины пламени.
- 3. Уравнение продуктов горения на внутреннем пожаре.

Вариант 6

- 1. Токсичные продукты горения, понятия и физические величины.
- 2. Уравнение баланса кислорода на внутреннем пожаре.
- 3. Перепад давлений.

Вариант 7

- 1. Формулировка закона распределения внутренних давлений по высоте помещения (аналитическая запись).
- 2. Уравнение энергии внутреннего пожара.
- 3. Понятие дыма и его характеристики.

- 1. Формула для определения скорости газа, физический смысл, величины с нее входящие.
- 2. Понятие и физические величины пламени.
- 3. Перепад давлений.

- 1. Токсичные продукты горения, понятия и физические величины.
- 2. Раскрыть особенности режимов работы проемов.
- 3. Опасные факторы пожара.

Вариант 0

- 1. Раскрыть особенности режимов работы проемов.
- 2. Уравнение энергии внутреннего пожара.
- 3. Уравнение продуктов горения на внутреннем пожаре.

Письменные вопросы по теме: Математическая постановка задачи и динамики опасных факторов начальной стадии пожара

Вариант 1

- 1. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 2. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- 3. Помещения с малой проемностью.
- 4. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- 5. Среднеобъемная температура газовой среды как ОФП.

Вариант 2

- 1. Критическая продолжительность пожара, по условию достижения предельно допустимых значений концентраций токсичных газов (продуктов горения) в помещении.
- 2. Проемность, определение и величины ее описывающие.
- 3. Начальные условия при постановки задачи о динамики ОФП начальной стадии.
- 4. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии.
- 5. Токсичные продукты горения как ОФП.

- 1. Критическая продолжитель ность пожара по условию достижения температуры в помещении предельно допустимого значения
- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- 3. Критическая продолжительность пожара по условию достижения оптической плотности дыма в помещении предельно допустимых значений.
- 4. Определение массы выгоревшего материала в зависимости от формы развития пожара и от вида пожарной нагрузки.
- 5. Пламя и искры как ОФП.

- 1. Коэффициент теплопотерь, определение, способы применения
- 2. Критическая продолжительность пожара по условию достижения температуры в помещении предельно допустимого значения.
- 3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.
- 4. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 5. Дым как ОФП.

- 1. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 2. Проемность, определение и величины ее описывающие.
- 3. Критическая продолжительность пожара по условию достижения оптической плотности дыма в помещении предельно допустимых значений.
- 4. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 5. Среднеобъемная температура газовой среды как ОФП.

- 1. Коэффициент теплопотерь, определение, способы применения.
- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- 3. Начальные условия при постановки задачи о динамике ОФП в начальной стадии.
- 4. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- 5. Дым как ОФП.

Вариант 7

- 1. Критическая продолжительность пожара по условию достижения концентрации токсичных газов (продуктов горения) в помещении предельно допустимых значений.
- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.
- 3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.
- 4. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 5. Дым как ОФП.

Вариант 8

- 1. Коэффициент теплопотерь, определение, способы применения.
- 2. Проемность, определение и величины ее описывающие.
- 3. Начальные условия при постановки задачи о динамики ОФП начальной стадии пожара.
- 4. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- 5. Токсичные продукты горения как ОФП.

- 1. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.

- 3. Помещения с малой проемностью.
- 4. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии пожара.
- 5. Пламя и искры как ОФП.

- 1. Критическая продолжительность пожара по условию достижения концентрации токсичных газов (продуктов горения) в помещении предельно допустимых значений.
- 2. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- 3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.
- 4. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии пожара.
- 5. Среднеобъемная температура газовой среды как ОФП.

Письменные вопросы по теме: Прогнозирование опасных факторов пожара при тушении с использованием интегрального метода.

Вариант 1

- 1. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- 2. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии пожара.
- 3. Критическая продолжительность пожара, по условию достижения температурой в помещении предельно допустимого значения.
- 4. Модификация базовой математической модели для учета влияния объемного газового тушения.

Вариант 2

1. Начальные условия при постановки задачи о динамики ОФП начальной стадии пожара.

- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- 3. Критическая продолжительность пожара по условию достижения предельно допустимого значения концентрации кислорода в помещении.
- 4. Дополнительное уравнение баланса, учитывающее влияние объемного тушения газом.

- 1. Проемность, определение и величины ее описывающие.
- 2. Дифференциальное уравнение, описывающее процесс изменения парциальной плотности токсичных продуктов горения в помещении.
- 3. Критическая продолжительность пожара по условию достижения предельно допустимых значений концентрации токсичных газов (продуктов горения) в помещении.
- 4. Влияние концентрации огнетушащего вещества на скорость выгорания.

Вариант 4

- 1. Помещения с малой проемностью.
- 2. Критическая продолжительность пожара, по условиям достижения оптической плотности дыма в помещении предельно допустимых значений.
- 3. Критическая продолжительность пожара по условиям достижения температурой в помещении предельно допустимого значения.
- 4. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.

- 1. Определение массы выгоревшего материала в зависимости от формы развития пожара и от вида пожарной нагрузки.
- 2. Коэффициент теплопотерь, определение, способы применения.
- 3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.

4. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.

Вариант 6

- 1. Значения вводимых параметров А, В и п.
- 2. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- 3. Сущность дифференциального метода прогнозирования ОФП, его информативность и область практического использования.
- 4. Проемность, определение и величины ее описывающие.

Вариант 7

- 1. Начальные условия при постановке задачи о динамики ОФП начальной стадии.
- 2. Дифференциальное уравнение, описывающее процесс изменения парциальной плотности токсичных продуктов горения в помещении.
- 3. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- 4. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.

Вариант 8

- 1. Определение массы выгоревшего материала в зависимости от формы развития пожара и от вида пожарной нагрузки.
- 2. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- 3. Критическая продолжительность пожара, по условию достижения предельно допустимого значения температуры в помещении.
- 4. Дополнительное уравнение баланса, учитывающее влияние объемного тушения газом.

- 1. Значения вводимых параметров А, В и п.
- 2. Коэффициент теплопотерь, определение, способы применения.

- 3. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- 4. Модификация базовой математической модели для учета влияния объемного газового тушения.

- 1. Определение массы выгоревшего материала в зависимости от формы развития пожара и от вида пожарной нагрузки.
- 2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- 3. Сущность дифференциального метода прогнозирования ОФП, его информативность и область практического использования.
- 4. Модификация базовой математической модели для учета влияния объемного газового тушения.

Письменные вопросы по теме: Зонная математическая модель пожара в помещении. Численная реализация зонной модели.

Вариант 1

Область практического применения зонных моделей пожаров.

Вариант 2

Взаимосвязь между зонами пожара и изменение их размеров в течение времени.

Вариант 3

Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.

Вариант 4

Определение потоков энергии из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.

Математическая постановка задачи о динамике опасных факторов пожара в припотолочной зоне.

Вариант 6

Модификация базовой интегральной модели для определения ОФП по зонам

Вариант 7

Область практического применения зонных моделей пожаров.

Вариант 8

Взаимосвязь между зонами пожара и изменение их размеров в течение времени.

Вариант 9

Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.

Вариант 0

Определение потоков энергии из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.

Письменные вопросы по теме: Дифференциальные (полевые) математические модели пожара в помещении. Численная реализация полевой модели.

Вариант 1

Общие положения о «полевых» моделях.

Вариант 2

Модель Астаховой И.Ф. Изотермические граничные условия.

Вариант 3

Допущения модели Астаховой И.Ф.

Вариант 4

Методы решения задач о динамики ОФП.

Отличительные особенности «полевых» моделей пожара от известных.

Вариант 6

Диффузионная модель с изобарными граничными условиями.

Вариант 7

Допущения диффузионной модели.

Вариант 8

Отличительные особенности двух «полевых» моделей друг от друга.

Вариант 9

Допущения модели Астаховой И.Ф.

Вариант 0

Допущения диффузионной модели

Параметры пожарной нагрузки для жилых и нежилых помещений зданий и сооружений

	1				1	1-		· · ·
		Низшая	Линей-	Удель-		Удельное		Удель-
		рабочая	ная ско-	ная		ыделение		ное
		теплота	рость	ско-		двуокиси	выде-	потреб-
	Наименование	сгора-	распро-	рость		углерода	ление	ле-ние
No	горючей	ния $Q_{p}^{\;H}$,	стране-	выго-	D_{m} ,	$L_{\rm CO2}$,	окиси	кисло-
п/п	нагрузки		ния	рания			угле-	рода
	нагрузки	МДж кг	пламе-	$\dot{v}_{\scriptscriptstyle M}.T_{\scriptscriptstyle 3}$		кг·кг ⁻¹	рода	L_{O2} ,
		-1	ни, V_{Π} ,	кг·м ⁻² ·с	-		$L_{\rm CO}$,	
			м·с ⁻¹	1	Hπ·м ² ·			кг·кг ⁻¹
					КГ ⁻¹		кг·кг ⁻¹	
	Здание I-II							
	степени огне-							
1	стойкости;	13,8	0,0108	0,0145	270	0,203	0,0022	-1,03
	мебель + быто-							
	вые изделия							
	Здание I-II							
2	степени огне-	14,7	0,0108	0,0145	82	1,285	0,0022	-1,437
2	стойкости;	14,7	0,0108	0,0143	02	1,203	0,0022	-1,437
	мебель + ткани							
	Здание III-IV							
	степени огне-							
3	стойкости;	13,8	0,0465	0,0344	270	0,203	0,0022	-1,03
	мебель + быто-							
	вые изделия							
	Здание III-IV							
4	степени огне-	14,7	0,0465	0,0344	82	1,285	0,0022	-1,437
1	стойкости;	14,7	0,0403	0,0344	02	1,203	0,0022	-1,437
	мебель + ткани							
	Здание I степе-							
	ни огнестойко-							
5	сти; мебель +	14,9	0,0125	0,0162	58,5	1,32	0,0193	-1,437
	ткани							
	(0,75+0,25)							
	Здание III сте-							
	пени огнестой-							
6	кости; мебель	14,9	0,04	0,0162	58,5	1,32	0,0193	-1,437
	+ тка-							
	ни(0,75+0,25)							

7	Кабинет; ме- бель +бумага (0,75+0,25)	14,002	0,042	0,0129	53	0,642	0,0317	-1,161
8	Помещение, облицованное панелями ДВП	18,1	0,0405	0,0143	130	0,686	0,0215	-1,15
9	Административное помещение; мебель + бумага (0,75+0,25)	14,002	0,022	0,021	53	1,434	0,043	-1,161
10	Лекарственный препарат; этиловый спирт + глицерин (0,95+0,05)	26,6	ı	0,033	88,1	1,912	0,262	-2,304
11	Общественные здания; мебель + линолеум ПВХ (0,9+1)	14	0,015	0,0137	47,7	1,478	0,03	-1,369
12	Библиотеки, архивы, книги, журналы на стеллажах	14,5	0,0103	0,011	49,5	1,1087	0,0974	-1,154
13	Сценическая часть зрительного зала; древесина	13,8	0,0368	0,0145	57	1,57	0,024	-1,15
14	Верхняя одеж- да; ворс, ткани (шерсть + нейлон)	23,3	0,0835	0,013	129	0,467	0,0145	-3,698
15	Резинотехнические изделия; резина, изделия из нее	36	0,0184	0,0112	850	0,416	0,015	-2,99
16	Окрашенные полы, стены; дерево + крас- ка РХО (0,9+0,1)	14,1	0,0151	0,0145	71,3	1,47	0,0349	-1,218

	D							1
	Выставочный зал, мастер-							
17	ская; дерево +	14	0,0163	0,0152	53	1,423	0,023	-1,218
17	ткани + крас-	1-7	0,0103	0,0132	33	1,423	0,023	1,210
	ка(0,9+0,09+0,0 1)							
	Издательство,							
18	типографии	15,4	0,004	0,0061	41	0,771	0,169	-1,158
	Каюта с синте-							
10	тической от-	150	0.0177	0.015	122 5	0.045	0.0425	1 240
19	делкой; дерево + ткани + от-	15,8	0,0177	0,015	133,5	0,845	0,0425	-1,249
	делка							
	Мебель; дере-							
20	во + облицовка	14,4	0,0154	0,0135	84,1	1,55	0,0367	-1,288
	Промтовары;							
21	текстильные	16,7	0,0071	0,0244	60,6	0,879	0,0626	-2,56
	изделия Кабельный							
22	подвал/лоток;	20.5	0.0071	0.0244	501	0.65	0.1007	2.10
22	кабели АВВГ+	30,7	0,0071	0,0244	521	0,65	0,1295	-2,19
	АПВГ							
23	Толуол	40,9	-	0,043	562	3,677	0,148	-3,098
24	Ксилол	41,2	-	0,09	402	3,657	0,148	-3,623
25	Бензин А76	43,2	-	0,0585	256	2,92	0,175	-3,405
26	Керосин Дизельное	43,3	-	0,0415	438,1	2,92	0,148	-3,341
27	топливо	45,4	-	0,0425	620,1	3,163	0,122	-3,368
	Радиоматериа-							
	лы; поли-							
28	(этилен, сти-	34,8	0,0137	0,0177	381	0,764	0,10	-3,312
	рол, пропил),							
	гетинакс Электротехни-							
2.0	ческие матери-	26.5	0.0127	0.00=	26-	0.07-	0.0774	
29	алы; текстолит,	20,9	0,0125	0,0076	327	0,375	0,0556	-1,95
	карболит							
	Теплоноси-							
30	тель; турбин-	41,9	-	0,03	243	0,70	0,122	-0,282
	ное масло ТП- 22							
	22						l	

31	Электрокабель АВВГ; ПВХ оболочка + изоляция	25	0,0071	0,0244	635	0,398	0,109	-2,19
32	Электрокабель АПВГ; ПВХ оболочка + полиэтилен	36,4	0,0071	0,0244	407	0,903	0,15	-2,19
33	Телефонный кабель ТПВ; ПВХ + поли- этилен	34,6	0,0022	0,0085	556	0,903	0,124	-2,19
34	Сырье для нефтехимии; нефть	44,2	-	0,0241	438	3,104	0,161	-3,24
35	Ацетон	29	-	0,044	80	2,293	0,269	-2,22
36	Этиловый спирт	27,5	-	0,031	80	1,937	0,269	-2,362
37	Лесопильный цех I-III степени огнестойкости; древесина	13,8	0,0396	0,0145	57	1,57	0,024	-1,15
38	Лесопильный цех IV-V сте- пени огнестой- кости; древеси- на	13,8	0,0583	0,0145	57	1,57	0,024	-1,15
39	Цех деревооб- работки; дре- весина	13,8	0,022	0,0145	57	1,57	0,024	-1,15
40	Цех сушки древесины; древесина	0,138	0,0375	0,0145	57	1,57	0,024	-1,15

Приложение 2.

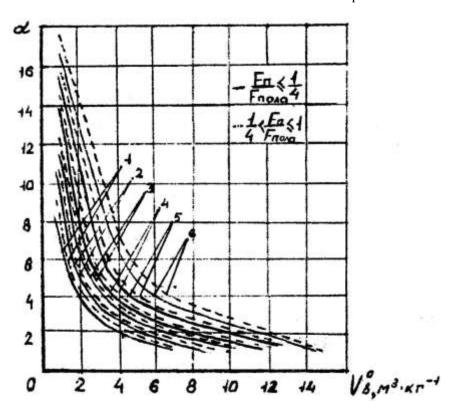
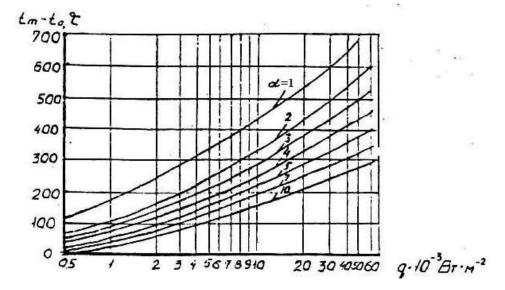



График изменения коэффициента избытка воздуха α от F_I/F_Π : I - F_I/F_Π \leq I / 24; 2 - F_I/F_Π = I / 18; 3 - F_I/F_Π = I / I0; 4 - F_I/F_Π = I / 6; 5 - F_I/F_Π = I / 4: 6 - F_I/F_Π = I / 3:

 $V_B^{\,O}$ - теоретическое количество воздуха для сгорания I кг горючего, м 3 ·кг $^{-1}$; α - коэффициент избытка воздуха; F_I - площадь приточной части проёмов, м 2 ; F_{π} - площадь пожара, м 2 ; $F_{\text{пола}}$ - площадь пола помещения, м 2 .

Окончание приложения 2

Номограмма для определения среднеобъёмной температуры внутреннего пожара:

 α - коэффициент избытка воздуха; q - тепловой поток, $B \tau \cdot \text{m}^{-2}; \, t_m \text{-} t_0$ - среднеобъемная температура внутреннего пожара, $^0 C.$

Приложение 3.

Объём воздуха и выделившихся продуктов горения при сгорании килограмма вещества

		07 "	06 "	
		Объём воздуха	Объём	
No	Горуомаа размаатра мим матармал	для полного	продуктов	
Π/Π	Горючее вещество или материал	сгорания V_0^{s} ,	сгорания, м ³ ·кг ⁻¹	
		м ³ ·кг ⁻¹	м кг	
1	Амилацетат	7,8	8,56	
2	Амиловый спирт	9,1	10	
3	Анилин	8,9	9,34	
4	Ацетилен	10,25	10,7	
5	Ацетон	7,35	8,14	
6	Бензин	11,6	12,35	
7	Бензол	10,25	10,7	
8	Битум	9,45	10,39	
9	Бумага, хлопок, хлопчатобумажные тка-	3,95	4,65	
9	ни	3,93	4,03	
10	Бутан	11,94	12,91	
11	Бутиловый спирт	8,64	9,52	
	Древесина при влажности:			
12	10%	4,2	4,86	
12	20%	3,74	4,42	
	30%	3,54	3,99	
13	Капролактам	7,76	8,54	
14	Каучук натуральный	10	10,76	
15	Каучук синтетический	10,16	10,82	
16	Керосин	11,36	12,29	
17	Киноплёнка нитроцеллюлозная	3,62	4,32	
18	Киноплёнка триацетатная	4,34	4,97	
19	Мазут	11	11,86	
20	Метан	13,32	14,72	
21	Нефть	11,8	11,86	
22	Полистирол	10,25	10,68	
23	Полиэтилен	11,42	12,22	
24	Пенополиуретан	6	6,55	
25	Резина	9,9	10,5	
26	Толуол	10,46	11,94	
27	Торф при влажности 10%	4,54	5,14	
28	Хлопок	3,7	4,5	

Приложение 4

ОСНОВНЫЕ ПАРАМЕТРЫ НЕКОТОРЫХ ГАЗОВ

Вещества	Молекулярная масса <i>μ</i> , кг·моль-1	Плотности при нормальных физических условиях ρ , кг \cdot м \cdot ³	Газовая постоянная <i>R</i> , Дж·кг ⁻¹ ·К ⁻¹
Воздух	28,96	1,293	287,0
Кислород	32,00	1,429	259,8
Водород	2,016	0,090	4124,0
Водяной пар	18,016	0,804	461,8
Окись углерода	28,01	1,250	296,8
Двуокись углерода	44,01	1,977	188,9
Аммиак	17,032	0,771	488,3
Этилен	28,052	1,251	296,6
Метан	16,032	0,717	518,8
Этан	30,068	1,356	276,5
Продан	44,094	2,004	188,55

Приложение 5 Значения плотности и среднеобъемной теплоемкости воздуха (при $P=101,3~\kappa H\cdot m^{-2}$) и продуктов горения.

Темпера-тура	В	оздух	Продукты горения		
t,°C	ρ _В , кг·м ⁻³	С _Р , кДж·кг ⁻¹ ·К ⁻¹	$ ho_{\Pi\Gamma}$, кг·м $^{-3}$	С _Р , кДж·кг ⁻¹ ·К ⁻¹	
0	1,293	1,269	1,31	1,043	
100	0,943	1,297	0,96	1,068	
200	0,722	1,306	0,77	1,097	
300	0,596	1,318	0,63	1,122	
400	0,507	1,331	0,54	1,151	
500	0,9441	1,348	0,49	1,185	
600	0,391	1,364	0,44	1,214	
700	0,351	1,377	0,4	1,239	
800	0,358	1,39	0,37	1,264	
900	0,29	1,402	0,34	1,290	
1000	0,265	1,423	0,32	1,306	

Литература

- 1. Моделирование пожаров и взрывов / под ред. Н.Н. Брушлинского и А.Я. Корольченко М.: "Пожнаука", 2000. 492 с.
- 2. Федеральный закон № 123-Ф3. от 22 июля 2008 г. «Технический регламент о требованиях пожарной безопасности». Новосибирск: Сиб.унив.изд-во, 2008. 144 с.
- 3. Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие. М.: Академия ГПС МВД России, 2000. 118c.
- 4. Пузач С.В., Зернов С.И., Богатищев А.И., Карпов С.Ю. Расчет фактических пределов огнестойкости строительных конструкций с учетом реальных параметров пожара, действий систем пожаротушения, механической вентиляции и дымоудаления (математическая модель и методика расчета). Саранск: Мордовское книжное издательство, 2004. 80с.
- 5. Пузач С.В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. Монография. М.: Академия ГПС МЧС России, 2005. 336 с
- 6. Астапенко В.М., Кошмаров Ю.А. и др. Термогазодинамика пожаров в помещениях. М., Стройиздат, 1988. 418 с.
- 7. Кошмаров Ю.А., Рубцов В.В. Процессы нарастания опасных факторов пожара в производственных помещениях и расчет критической продолжительности пожара. М.: МИПБ МВД России, 1999. 89 с.
- 8. Кошмаров Ю.А., Зотов Ю.С. и др. Лабораторный практикум по курсу "Прогнозирование опасных факторов пожара в помещениях". М., МИПБ МВД РФ, 1997.- 68 с.
- 9. Кошмаров Ю.А., Башкирцев М.П. Термодинамика и теплопередача в пожарном деле. М.: ВИПТШ МВД СССР, 1987. 444 с.
- 10. Драйздел Д. Введение в динамику пожара.- М.: Стройиздат, 1990. 420 с.
- 11. Зотов Ю.С. Расчет динамики задымления помещений // Безопасность людей при пожарах: Сб. науч. тр. М.: ВНИИПО МВД СССР, 1984. С. 79 85.