Министерство образования и науки Российской Федерации ФГБОУ ВПО Кемеровский технологический институт пищевой промышленности

		УТВЕРЖДАЮ:					
Начальник УМУ							
	_Бра	гинский В.И					
		(Ф.И.О.)					
«	>>	2011 г.					

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б2.Б3 Физика

Квалификация (степень) выпускни	са бакалавр
Профиль подготовки бакалавра	«Холодильная техника и технологии»
Форма обучения	очная
Выпускающая кафедра	Теплохладотехника

Сомости		цоем- сть	Лек-	Практич.	Лаборат. работ,	кп	CPC,	Форма промежу- точного кон-
Семестр	зач.ед	ч.	ций, ч.	занятий, ч.	ч.	(KP)	ч.	троля (экз./зачет)
1	4	144	36	18	36		54	зачет
2	3	108	36		36		36	экзамен
Итого	7	252	72	18	72		90	

КЕМЕРОВО 2011г.

Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 141200 от 17 сентября 2009 г. № 337 и ООП утвержденная на основании ФГОС ВПО от 25 января 2011 г № 96

Pa	боча	я программа рассмотрена на заседан	нии кафедры	
<u> </u>		201_г. протокол №	_ Зав. кафедрой	
		(дата)	(подпис	ь, Ф.И.О.)
		Рабочую программу составил (и) _ (должность, Ф.И.О.)		
		Рабочая программа рассмотрена м	етодкомиссией	факультета и рекомендована
ку	твер	ждению (наименование)	-	
	_		_ Председатель МК	
		(дата)	(подпис	ь, Ф.И.О.)
		Рабочая программа зарегистрирова	ана в учебно-методической лаборатори	и
<u> </u>		201_Γ.	Регистрационный номе	ep
(да	та)			
(пс	дпис	ь лица, зарегистрировавшего программу)		

1. Цели освоения дисциплины

Целью освоения дисциплины «Физика» является ознакомление с основными физическими законами и явлениями для формирования представлений о современной научной картине мира на основе целостной системы естественнонаучных знаний, а также для их применения при решении задач, возникающих в последующей профессиональной деятельности.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина физика относится к базовой части цикла математических и естественнонаучных дисциплин.

Программа дисциплины «Физика» предназначена для студентов 1, 2 курса. Изучение дисциплины требует знания физики в объеме курса средней школы, а также полученные ранее знания при освоении дисциплин «Математика», «Информатика».

Данная дисциплина необходима для успешного освоения дисциплин «Теоретическая механика», «Механика жидкости и газа», «Термодинамика и тепломассообмен», «Электротехника и электроника», «Метрология, стандартизация и сертификация», «Детали машин и ПТУ», «Теплофизические процессы в холодильной технологии».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования.

- 1. Знать основные физические явления и законы; (ОК-10), (ОК-15).
- 2. Знать основные физические величины и физические константы, их определение и единицы их измерения; (ПК-1), (ПК-2).
- 3. **Знать** принципы использования природных ресурсов, энергии и материалов (ОК-15), (ПК-1)..
- 4. Уметь применять физико-математические методы для решения практических задач; (ПК-1), (ПК-2).
- 5. **Уметь** применять статистические методы к оценке точности измерений и испытаний (ПК-1), (ПК-2).
- 6. Владеть методами проведения физических измерений, методами оценки погрешностей при проведении эксперимента (ПК-1), (ПК-2).

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет $\underline{7}$ зачетных единиц, $\underline{252}$ часа.

4.1 Лекционные (теоретические) занятия

№	Наименование раздела дисци- плины	Содержание раздела дисциплины	Кол- во часов	Се- местр	Результат обучения, формируемые компетен- ции
1	2	3	4	5	6
1.	Физические величины и единицы их измерения	Физика, как наука. Связь физики с другими науками, связь физики и техники. Особенности процесса измерения. Физические величины, основные единицы системы СИ.	2	1	Использование основных постулатов естественно- научных дисциплин в профессиональной
2.	Физические основы ме- ханики	Кинематики поступательного и вращательного движения. Перемещение, скорость, ускорение. Нормальное и тангенциальное ускорение. Угловые величины, их связь с линейными.	2	1	деятельности (ОК- 10); использование фун- даментальных зако- нов природы в про- цессе профессио-
3.		Динамика материальной точки и поступательного движения твёрдого тела. Уравнения движения.	2	1	нальной деятельно- сти (ОК-15);
4.		Работа переменной силы. Кинетическая и потенциальная энергия механической системы.	2	1	применение физико- математического аппарата, теорети- ческих, расчетных и
5.		Динамика вращательного движения твёрдого тела. Момент силы и момент импульса механической системы. Момент инерции тела относительно оси. Теорема Штейнера.	2	1	экспериментальных методов исследований (ПК-2).
6.		Законы сохранения энергии импульса и момента импульса. Связь законов сохранения с симметрией пространства и времени.	2	1	
7.		Неинерциальные системы отсчета. Силы инерции. Сила Кориолиса.	2	1	
8.		Кинематика и динамика жидкостей и газов. Элементы механики жидкостей. Уравнение неразрывности и Бернулли. Вязкость. Ламинарный и турбулентный режимы течения жидкостей.	2	1	
9.		Принцип относительности в механике. Преобразование Лоренца. Относительность одновременности Относительность длин и промежутков времени. Основы релятивистской механики. Релятивистский закон сложения скоростей. Релятивистский импульс. Взаимосвязь массы и энергии.	2	1	

1	2	3	4	5	6
10.	Теория коле- баний и волн	Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний. Маятники. Энергия гармонических колебаний.	2	1	Использование основных постулатов естественнонаучных дисциплин в профессиональной
11.		Затухающие колебания. Вынужденные колебания, Резонанс. Сложение гармонических колебаний.	2	1	деятельности (ОК- 10); использование фун-
12.		Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Длина волны и волновое число. Интерференция волн. Стоячие волны. Энергия волны. Фазовая и групповая скорость волн.	2	1	даментальных законов природы в процессе профессиональной деятельности (ОК-15);
13.	Молекуляр- ная физика и термоди- намика	Основы молекулярно-кинетической теории идеальных газов. Число степеней свободы молекул. Распределение Больцмана. Распределение Максвелла.	2	1	применение физикоматематического аппарата, теоретических, расчетных и экспериментальных
14.		Равновесные состояния и процессы. Внутренняя энергия идеального газа. Работа. Количество теплоты. Теплоемкость. Первое начало термодинамики. Адиабатный процесс.	2	1	методов исследований (ПК-2).
15.		Обратимые и необратимые процессы. Круговой процесс (цикл) Тепловые двигатели и холодильные машины. Цикл Карно и его К.П.Д. для идеального газа.	2	1	
16.		Термодинамические функции состояния. Второе начало термодинамики. Энтропия. Энтропия идеального газа. Статистическое толкование второго начала термодинамики.	2	1	
17.		Отступление от законов идеальных газов. Реальные газы уравнение Ван-дер-Ваальса. Фазовые переходы. Критическое состояние. Внутренняя энергия реального газа. Особенности жидкого и твердого состояний вещества.	2	1	
18.		Кинетические явления. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса в термодинамических неравновесных системах. Молекулярно-кинетическая теория диффузии, теплопроводности и внутреннего трения в газах.	2	1	

1	2	3	4	5	6
19.	Электриче- ство и маг- нетизм	Электрическое поле. Напряжённость и потенциал поля. Расчёт электростатических полей методом суперпозиции. Поток вектором напряжённости. Теорема Остроградского—Гаусса.	2	2	Использование основных постулатов естественнонаучных дисциплин в профессиональной деятельности (ОК-
20.		Электростатика в веществе. Свободные и связанные заряды. Проводники в электрическом поле. Распределение зарядов в проводнике. Типы диэлектриков. Диэлектрическая восприимчивость вещества. Электрическое смещение.	2	2	10); использование фундаментальных законов природы в процессе профессиональной деятельности (ОК-15);
21.		Магнитостатика в вакууме. Магнитное поле. Магнитная индукция. Закон Ампера. Магнитное поле тока. Закон Био-Савара-Лапласа. Вихревой характер магнитного поля.	2	2	применение физико- математического аппарата, теорети- ческих, расчетных и
22.		Магнитостатика в веществе. Магнитные моменты атомов. Намагниченность. Магнитная восприимчивость и магнитная проницаемость. Напряжённость магнитного поля. Диа-, пара- и ферромагнетизм.	2	2	экспериментальных методов исследований (ПК-2).
23.		Явление электромагнитной индукции. Явление самоиндукции. Индуктивность. Явление взаимной индукции. Энергия магнитного поля.	2	2	
24.		Основы теории Максвелла для электромагнитного поля. Уравнения Максвелла. Материальные уравнения. Электромагнитные волны.	2	2	
25.	Оптика	Элементы фотометрии. Законы геометрической оптики. Отражение и преломление света. Оптические системы.			
26.		Интерференция света. Понятие о когерентности. Расчет интерференционной картины от двух когерентных источников. Оптическая длина пути. Интерферометры. Интерференция в тонких пленках.	2	2	
27.		Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция Фраунгофера на одной цели и дифракционной решетке. Физический смысл спектрального разложения. Элементы	2	2	

	Фурье-оптики.		

1	2	3	4	5	6
28.	Квантовая физика	Тепловое излучение. Гипотеза Планка. Корпускулярные свойства света. Формула Эйнштейна для фотоэффекта. Эффект Комптона. Гипотеза де Бройля. Корпускулярноволновой дуализм Принцип неопределённости.	2	2	Использование основных постулатов естественнонаучных дисциплин в профессиональной деятельности (ОК-10);
29.		Уравнение Шредингера. Волновая функция и её физиический смысл. Квантовые состояния. Принцип суперпозиции. Принцип причинности в квантовой механике.	2	2	использование фундаментальных законов природы в процессе профессиональной деятельно-
30.		Частица в одномерной прямоугольной потенциальной яме. Квантование энергии частицы. Квантовый гармонический осциллятор. Атом водорода. Главное, орбитальное и магнитное квантовые числа.	2	2	сти (ОК-15); применение физико- математического аппарата, теорети- ческих, расчетных и
31.		Спин электрона. Спиновое квантовое число. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Распределение электронов в атомах по состояниям.	2	2	экспериментальных методов исследований (ПК-2).
32.		Радиоактивность. Состав ядра. Деление и синтез ядер. Ядерная энергетика. Кварки и глюоны. Лептоны и адроны. Современная систематика элементарных частиц.	2	2	
33.	Статисти- ческая фи- зика и тер- модинамика	Классическая и квантовая статистики. Фазовое пространство. Функция распределения. Понятие о квантовых статистиках Бозе-Эйнштейна и Ферми-Дирака.	2	2	
34.	Физические принципы, лежащие в основе действия современных приборов	Энергетические зоны в кристаллах. Распределение электронов по энергетическим зонам. Валентная зона и зона проводимости. Проводники, диэлектрики и полупроводники. Собственная и примесная проводимость. Контактные явления. Диод. Транзистор.	2	2	
35.	Основы нанотехно- логий	Основные принципы формирования наносистем и наноматериалов. Основы физика наноустройств. Устройства наноэлектроники.			
36.	Основы си- нергетики	Термодинамика открытых систем, далеких от равновесия. Диссипативные системы. Понятие о самоорганизации. Синергетика.	2	2	

4.2. Практические (семинарские) занятия

Nº	Наименование раздела дисциплины	Тематика практических занятий (семинаров)	Кол- во ча- сов	Ce- mec Tp	Результат обучения, формируемые компе- тенции
1.	Физические осно- вы механики	Кинематика.	2	1	Способность выявлять сущность
2.		Динамика материальной точки.	2	1	научно- технических про-
3.		Динамика твердого тела	2	1	блем, возникаю- щих в ходе про-
4.		Законы сохранения	2	1	фессиональной деятельности, и при-
5.		Элементы гидродинамики			влекать для их анализа соответству-
6.		Газовые законы	2	1	ющий физико-
7.		Распределения Максвелла и Больцмана	2	1	аппарат (ПК-1).
8.		Первое и второе начала термодинамики	2	1	
9.		Явления переноса	2	1	

4.2. Лабораторные занятия

№	Наименование раздела дисциплины	Наименование лабораторных работ	Кол- во часов	Се- местр	Результат обучения, формируемые компетен- ции
1.	Вводное занятие	Ознакомление с правилами техники безопасности при работе в лабораториях кафедры физики. Ознакомление с методами обработки результатов измерений.	4	1	Владеть культурой безопасности (ОК-21).
2.	Физические осно- вы механики	Изучение закономерностей сво- бодно падающих тел. Определе- ние ускорения свободного паде- ния.	4	1	Умение примененять физикоматематический аппарат, теоретиче-
3.		Определение момента инерции маятника Обербека.	4	1	ские, расчетные и экспериментальные
4.	Молекулярная фи- зика и термоди- намика	Определение отношения тепло- емкостей воздуха Cp/Cv методом Клемана-Дезорма.	4	1	методы исследований (ПК-2). Умение составлять
5.		Определение вязкости жидкости методом Стокса.	4	1	описания выпол-
6.	Электричество и магнетизм	Исследование электростатиче- ского поля.	4	1	ненных расчетно- экспериментальных работ и разрабаты-
7.		Измерение сопротивлений при помощи мостовой схемы.	4	1	ваемых проектов, обрабатывать и ана-
8.		Измерение напряженности магнитного поля Земли.	4	1	лизировать полученные результаты,
9.		Снятие петли гистерезиса ферромагнетика.	4	1	готовить данные для составления отчетов (ПК-5);.
10.	Физика колебаний и волн. Оптика	Определение ускорения свободного падения методом оборотного маятника.	4	2	Умение проводить исследования по заданной методике и
11.		Определение скорости звука в воздухе	4	2	анализировать результаты экспери-
12.		Определение фокусного расстояния линз.	4	2	ментов (ПК-30). Способность изме-
13.		Изучение закона освещенности	4	2	рять и составлять
14.		Кольца Ньютона.	4	2	описание проводи-
15.		Дифракционная решетка	4	2	мых экспериментов;
16.		Изучения явления поляризации света	4	2	владение статисти-ческими методами и
17.	Квантовая физика Элементы физики конденсированного	Определение постоянной Стефана-Больцмана по излучательной способности вольфрама.	4	2	средствами обра- ботки эксперимен- тальных данных
18.	состояния	Исследование зависимости проводимости полупроводника от температуры.	4	2	проведенных исследований (ПК-32).

4.3. Самостоятельная работа студента

Раздел дисципли- ны	№ п/п	Вид СРС	Трудоем- кость, часов
Физические ос- новы механики, молекулярная	1	Подготовка к лабораторным работам	18
физика и тер- модинамика.	2	Оформление отчетов к лабораторным работам	18
	3	Подготовка к практическим занятиям	18
		Выполнение расчетно-графических и домашних заданий	6
Электричество и магнетизм, оптика кван- товая физика,	4	Подготовка к лабораторным работам	9
статистиче- ская физика		Оформление отчетов к лабораторным работам	9
	6	Выполнение расчетно-графических и домашних заданий	12
		Итого:	90

Домашние задания, типовые расчеты и т.п.

- 1. Домашние задания по механике (тесты).
- 2. Домашние задания по молекулярной физике и термодинамике (тесты).
- 3. Домашние задания по электричеству и магнетизму (тесты).
- 4. Домашние задания по оптике и квантовой физике (тесты).

5. Образовательные технологии

Удельный вес занятий, проводимых в интерактивных формах, определяется стандартом и составляет не менее 20% от аудиторных занятий, т.е. не менее 32 ч.

Занятия, проводимые в интерактивных формах

№ п/п	Наименование раздела дис- циплины	Вид учебных занятий	Методы активного обучения	Кол-во час
	Квантовая физика, элементы физики атома и молекулы, ядра и элементарных частиц	Проблемная лекция (лекции 28-32, 35,36)	Дискуссии	14
	Физические основы механики, электричество и магнетизм; физика колебаний и волн	Виртуальные лабораторные работы. (лабораторные занятия 2,3,5,6,9)	Компьютерная симуляция	20
		Итого		34

6. Формы контроля освоения дисциплины

Текущая аттестация студентов производится в дискретные временные интервалы лектором и преподавателями, ведущими лабораторные работы и практические занятия по дисциплине в следующих формах:

- тестирование;
- письменные домашние задания;
- выполнение лабораторных работ;
- защита лабораторных работ (тестирование);
- отдельно оцениваются личностные качества студента (аккуратность, исполнительность, инициативность) работа у доски, своевременная сдача тестов, отчетов к лабораторным работам и письменных домашних заданий.

Рубежная аттестация студентов производится по окончании раздела в следующих формах:

- тестирование;
- контрольные работы;

Промежуточный контроль по результатам семестра по дисциплине проходит в форме экзамена(зачета) и включает в себя ответ на теоретические вопросы и решение задач, либо в сочетании различных форм (компьютерного тестирования, решения задач и пр.).

Фонды оценочных средств, включающие типовые задания, контрольные работы, тесты и методы контроля, позволяющие оценить результат обучения по данной дисциплине, включены в состав УМК дисциплины.

Формирование итоговой оценки по дисциплине с использованием балльно-рейтинговой оценки работы студентов в семестре

Цифровое выражение	Словесное выражение	Описание работы и результатов работы студента	
5	ОНРИПТО	Активно участвовал в обсуждении лекционного материала по данной дисциплине на семинарах, выполнил весь объём расчетнографических и контрольных заданий. На экзамене дал правильные ответы более чем на 75% поставленных вопросов, ответы иллюстрированы примерами и даны с обобщениями.	
4	хорошо	Активно участвовал в обсуждении лекционного материала по данной дисциплине на семинарах, выполнил весь объём расчетнографических и контрольных заданий. На экзамене дал правильные ответы на 75% поставленных вопросов, ответы полные, но иногда без иллюстрирующих примеров и четко выраженных обобщений.	
3	удовлетво- рительно	Участвовал в работе семинаров, выполнил весь объём расчетнографических и контрольных заданий. На экзамене дал правильные ответы только на 50% поставленных вопросов, ответы без иллюстрирующих примеров и обобщений.	
2	неудовлетво- рительно	Не постоянно участвовал в работе семинара, не выполнил весь объём расчетно-графических работ и контрольных заданий. На экзамене дал правильные ответы менее чем на 50% поставленных вопросов.	

Оценка производится по 100-балльной шкале.

Оценка по традиционной (пятибалльной) шкале		Соответствующий интервал	
словесная	численная	по 100-балльной шкале	
Отлично	5	86 – 100	
Хорошо	4	71 – 85	
Удовлетворительно	3	56 -70	

7. Учебно-методическое и информационное обеспечение дисциплины 7.1. Учебно-методическое обеспечение дисциплины

Порядковый номер и библио-	Шифр библиотеки	Планируемое	Число экзем-	
графическое описание рекомен-	КемТИПП	число студентов	пляров выделя-	
дуемого источника литературы	ICM I FII II I	пользователей	емое на поток	
1	2	3	4	
	Основная литература			
1. Трофимова Т.И. Курс физики. М., Высш. шк. 1990.	53.T76	10	10	
2. Яворский Б.М., Детлаф А.А. Курс общей физики. М., Высш. Шк. 1979.	53.Я22	10	10	
3. Волькенштейн В.С. Сборник задач по курсу общей физики. М., Наука. 1985.	53.B71	10	10	

Дополнительная литература					
Савельев И.В. Курс общей физики Т.1, 2, 3. М., Наука	53.C12	10	10		
Методические разработки кафедры					
1. Бахтин Н.А., Осинцев А.М. Конспект лекций.	535.Б30	10	10		
6. Бахтин Н.А., Попов А.В. Механика. Лабораторный практикум для студентов всех специальностей.	531.Б30	10	10		
1. Уфимцева Л.Д. Методические указания к лабораторным работам по молекулярной физике.	53.У88	10	10		
5. Кирсанов Г.ЯМетодические указания к лабораторным работам по электричеству и магнетизму.	537.K43	10	10		
3. Бахтин Н.А., Кирсанов Г.Я., ., Осинцев А.М. Лабораторный практикум по оптике.	535.Б30	10	10		
7. Каминская Л.С., Киценко Л.А., Сташкова О.Т. Сборник задач и тестовых вопросов по физике. Ч.1. 1997.	53.K18	10	Для работы в читальном зале		
8. Каминская Л.С., Киценко Л.А., Сташкова О.Т. Сборник задач и тестовых вопросов по физике. Ч.2. 1998.	53.K18	10	Для работы в читальном зале		

7.2. Информационное обеспечение дисциплины

- 1. http://e-lib.kemtipp.ru/?id=22 электронная библиотека КемТИПП (Физика)
- 2. http://en.edu.ru/catalogue/304 естественно-научный образовательный портал (Физика)
- 3. www.fizkaf.narod.ru кафедра и лаборатория физики Московского института открытого образования

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Лекционные занятия:

а. комплект электронных презентаций/слайдов,

2. Лабораторные работы

- а. лаборатория механики, оснащенная комплектом лабораторного оборудования для проведения типовых лабораторных работ механики, физики колебаний и волн, молекулярной физики и термодинамики;
- b. лаборатория электричества и магнетизма, оснащенная комплектом лабораторного оборудования для проведения типовых лабораторных работ по курсу электричества и магнетизма;
- с. лаборатория оптики, оснащенная, комплектом лабораторного оборудования для проведения типовых лабораторных работ по курсу оптики, квантовой физики и физики конденсированного состояния.