|
|
Урок 10.1 Основы промышленой электроники
( Занятие
19 из 19 )
|
|
Промышленная электроника – наука о применении электронных приборов и устройств в промышленности.
В промышленной электронике можно выделить три области:
- информационную электронику (ИЭ);
- энергетическую электронику (ЭЭ);
- электронную технологию (ЭТ).
Информационная электроника является основой электронно-вычислительной, информационно-измерительной техники и автоматизации производства.
Энергетическая электроника является основой устройств и систем преобразования электрической энергии средней и большой мощностей. Сюда относятся выпрямители, инверторы, мощные преобразователи частоты и др.
Электронная технология включает в себя методы и устройства, используемые в технологических процессах, основанные на действии электрического тока и электромагнитных волн различной длины (высокочастотный нагрев и плавка, ультразвуковая резка и сварка и т.д.), электронных и ионных пучков (электронная плавка, сварка и т.д.).
Главные свойства электронных устройств (ЭУ):
- высокая чувствительность;
- быстродействие;
- универсальность.
Чувствительность электронных устройств – это абсолютное значение входной величины, при котором электронное устройство начинает работать. Чувствительность современных электронных устройств составляет 10-17А по току, 10-13 В по напряжению, 10-24 Вт по мощности .
Быстродействие электронных устройств обусловливает их широкое применение в автоматическом регулировании, контроле и управлении быстропротекающими процессами, достигающими долей микросекунды.
Универсальность заключается в том, что в электронных устройствах используется электрическая энергия, которая сравнительно легко получается из различных видов энергии и легко преобразуется в другие виды энергии, что очень важно, т.к. в промышленности используются все виды энергии.
В настоящее время широкое применение в промышленной электронике находят полупроводниковые приборы, т.к. они имеют важные достоинства:
- высокий КПД;
- долговечность;
надежность;
- малые масса и габариты.
Одним из главных направлений развития полупроводниковой электроники в последние десятилетия являлись интегральная микроэлектроника.
В последние годы широкое применение получили полупроводниковые интегральные микросхемы (ИС).
Микросхема – микроминиатюрный функциональный узел электронной аппаратуры, в котором элементы и соединительные провода изготавливаются в едином технологическом цикле на поверхности или в объеме полупроводника и имеют общую герметическую оболочку.
В больших интегральных схемах (БИС) количество элементов (резисторов, диодов, конденсаторов, транзисторов и т.д.) достигает нескольких сотен тысяч, а их минимальные размеры составляют 2…3 мкм. Быстродействие БИС привело к созданию микропроцессоров и микрокомпьютеров.
В последнее время широкое развитие получил новый раздел науки и техники – оптоэлектроника. Физическую основу оптоэлектроники составляют процессы преобразования электрических сигналов в оптические и обратно, а также процессы распространения излучения в различных средах.
Оптоэлектроника открывает реальные пути преодоления противоречия между интегральной полупроводниковой электроникой и традиционными электрорадиокомпонентами (резисторы переменные, кабели, разъемы, ЭЛТ, лампы накаливания и т.д.).
Преимуществом оптоэлектроники являются неисчерпаемые возможности повышения рабочих частот и использование принципа параллельной обработки информации.
|
|
|
Полупроводниковый диод (ПД) – прибор с одним p-n переходом и двумя выводами.
Он хорошо пропускает ток одного направления и плохо пропускает ток противоположного направления.
Эти токи и соответствующие им напряжения между выводами полупроводникового диода называются прямыми Iпр и обратными токами Iобр, прямыми Uпр и обратными Uобр напряжениями.
На рисунке 8.1 приведено условное изображение полупроводникового диода в схемах электрических цепей и его идеализированная вольтам-перная характеристика (ВАХ).
Прямой ток Iпр в ПД направлен от одного вывода (анода) к другому (катоду).
Анализ ВАХ ПД позволяет сделать вывод, что ПД – нелинейный элемент и сопротивление его зависит от величины и направления тока.
Так прямое сопротивление ПД составляет обычно не выше нескольких десятков Ом, а обратное сопротивление не ниже нескольких сотен кОм.
Вольтамперная характеристика ПД имеет ярко выраженные три участка, которые называются прямой (I), обратной (II) ветвями и ветвью стабилизации (III).
Полупроводниковые диоды, у которых рабочим участком является участок стабилизации III, называются стабилитронами. Они имеют значительное обратное сопротивление и применяются в схемах стабилизации

Рисунок 8.1 – Вольтамперная характеристика ПД и его условное обозначение.
|
|
Выпрямители на полупроводниковых диодах
|
|
|
Наиболее часто источники постоянного напряжения получают путем преобразования синусоидального (переменного) напряжения в постоянное напряжение.
Устройства, осуществляющие такое преобразование, называются выпрямителями.
В большинстве случаев для выпрямления переменного напряжения применяются выпрямители на ПД, поскольку они хорошо проводят ток в прямом направлении и плохо в обратном.
Простейшая схема выпрямителя показана на рисунке 8.2,а.
В ней последовательно соединены источник переменной ЭДС (е), диод Д и нагрузочный резистор Rн. Эта схема называется однополупериодной. Часто ее называют однофазной однотактной, т.к. источник переменной ЭДС является однофазным и ток проходит через него в одном направлении один раз за период (один такт за период).
В качестве источника синусоидальной ЭДС обычно служит силовой трансформатор, включенный в электрическую сеть (рисунок 8.2,б).

Рисунок 8.2 – Схемы выпрямителей на ПД
Графики на рисунке 8.3 иллюстрируют процессы в выпрямителе. ЭДС генератора изображена синусоидой с амплитудой Em (рисунок 8.3,а).
В течение положительного полупериода ЭДС e напряжение для диода является прямым, сопротивление его мало, и проходит ток i, создающий на резисторе Rн падение напряжения uR=uвых .
В течение следующего полупериода напряжение является обратным, тока практически нет из-за большого сопротивления диода (RД>>Rн) и uR=uвых=0.
Таким образом, через диод Д, нагрузочный резистор Rн и генератор проходит пульсирующий ток в виде импульсов, длящихся полпериода и разделенных промежутками также в полпериода. Этот ток называют выпрямленным током.
Он создает на резисторе Rн пульсирующее выпрямленное напряжение, полярность которого: со стороны катода получается плюс, а со стороны анода – минус.

Рисунок 8.3 – Графики напряжений выпрямителя, поясняющие его работу
Полезной частью выпрямленного напряжения является его постоянная составляющая, или среднее значение, Uср, которое равно

Вычитая из пульсирующего напряжения его среднее значение, получим переменную составляющую , которая имеет несинусоидальную форму. Для нее нулевой осью является прямая линия, изображающая постоянную составляющую. Полуволны переменной составляющей заштрихованы (рисунок 8.3,б). Переменная составляющая является «вредной» частью выпрямленного напряжения. Для ее уменьшения в нагрузочном резисторе и в выходном напряжении, т.е. для сглаживания пульсаций выпрямленного напряжения применяют сглаживающие фильтры (СФ). Простейшим СФ является конденсатор большой емкости, через который ответвляется переменная составляющая тока, чтобы возможно меньшая часть ее проходила в нагрузку.
Конденсатор хорошо сглаживает пульсации, если его емкость Сф такова, что выполняется условие:

При наличии конденсатора большой емкости Uср приближается к Um и может быть равным (0,8-0,95)Um и даже выше.
Однополупериодный выпрямитель применяют обычно для питания высокоомных нагрузочных устройств малой мощности (электронно-лучевых трубок и др.) допускающих повышенную пульсацию.
Наибольшее распространение получил двухполупериодный мостовой выпрямитель (рисунок 8.4).
Он состоит из трансформатора Тр и четырех диодов Д1,Д2,Д3,Д4, подключенных к вторичной обмотке трансформатора по мостовой схеме. К одной из диагоналей моста подсоединяется обмотка , а к другой – нагрузочный резистор Rн . Каждая пара диодов Д1,Д3 Д2,Д4 работает поочередно.

Рисунок 8.4 – Схема (а) и временные диаграммы напряжений мостового двухполупериодного выпрямителя
Диоды Д1,Д3 открыты в I полупериод напряжения U2 когда потенциал точки a выше потенциала точки b.
В следующий полупериод напряжения U2 потенциал точки b выше потенциала точки a, диоды Д2,Д4 открыты, а диоды Д1,Д3 закрыты.
В оба полупериода, как видно из рисунка 8.4 ток через нагрузочный резистор Rн имеет одно и то же направление.
Выражения для средних значений выпрямленных напряжения и тока имеют вид

Анализ приведенных соотношений показывает, что при одинаковых значениях параметров трансформаторов и сопротивлений Rн мостовой выпрямитель по сравнению с однополупериодным имеет следующие преимущества:
- средние значения выпрямленных тока и напряжения в два раза больше;
- пульсации значительно меньше;
- частота пульсаций в два раза выше, что уменьшает габариты фильтра.
|
|
Общие сведения о транзисторах
|
|
|
Транзисторы (Т) – полупроводниковые приборы, служащие для усиления мощности электрических сигналов. По принципу действия транзисторы делятся на биполярные и полевые (униполярные).

Рисунок 8.5 – Структура биполярного транзистора типов p-n-p− (а), n-p-n−− (б) и их условное обозначение.
Биполярный транзистор (БТ) – представляет собой трехслойную структуру (рисунок 8.5) В зависимости от способа чередования слоев БТ
называются транзисторами типа p- n-p или типа n-p-n (рисунок 8.5,а, б).
Транзистор называется биполярным, если физические процессы в нем связаны с движением носителей обоих знаков (свободных электронов и дырок).
В биполярном транзисторе средний слой называется базой (Б), один крайний слой – коллектором (К), а другой крайний слой – эмиттером (Э). Каждый слой имеет свой вывод, с помощью которых биполярный транзистор подключается в цепь.
Структура и условное обозначение одного из видов полевых транзисторов показана на рисунке 8.6. У полевых транзисторов так же, как и у биполярных – три электрода, называемые истоком, стоком и затвором.
Истоком (И) называется электрод, из которого в центральную область ПТ (канал) входят основные носители заряда или np-типов.
Сток (С) – электрод, через который основные носители уходят из канала.
Затвор (З) – электрод, управляющий потоком носителей заряда.
Поскольку в полевом транзисторе ток определяется движением носителей только одного знака p или n-типов, эти транзисторы называют также униполярными.

Рисунок 8.6 – Структура (а) и условное обозначение полевого транзистора с каналом p-типа.
|
|
Усилители на транзисторах
|
|
|
Усиление электрических сигналов необходимо при приеме радиосигналов, контроле и автоматизации технологических процессов, при измерении электрических и неэлектрических величин и т.д.
Простейшим усилителем является усилительный каскад (рисунок 8.7), содержащий нелинейный управляемый элемент УЭ, как правило биполярный или полевой транзистор, резистор R и источник электрической энергии E.
Усилительный каскад имеет входную цепь, к которой подводится входное напряжение Uвх (усиливаемый сигнал) и выходную цепь, с которой снимается выходное напряжение Uвых (усиленный сигнал).
Усиленный сигнал имеет значительно большую мощность по сравнению с входным сигналом. Увеличение мощности сигнала происходит за счет источника электрической энергии. Процесс усиления осуществляется посредством изменения сопротивления управляемого элемента, а, следовательно, и тока в выходной цепи, под воздействием входного напряжения или тока.

Рисунок 8.7 – Структурная схема усилительного каскада
Выходное напряжение снимается с управляемого элемента или резистора R. Таким образом, усиление основано на преобразовании электрической энергии источника постоянной ЭДС E в энергию выходного сигнала за счет изменения сопротивления управляемого элемента по закону, задаваемому входным сигналом.
Основными параметрами усилительного каскада являются:
- коэффициент усиления по напряжению Ku=Uвых/Uвх;
- коэффициент усиления по току Кi=Iвых/Iвх;
- коэффициент усиления по мощности Kp=Pвых/Pвх=Ku*Ki
Усилительный каскад имеет коэффициент усиления по напряжению Ku, равный нескольким десяткам. Для получения больших значений , достигающих многих тысяч и более, используют многокаскадные усилители, в которых каждый последующий каскад подсоединен к выходу предыдущего (рисунок 8.8).

Рисунок 8.8 – Структурная схема многокаскадного усилителя
Ku=Uвыхn/Uвх1=К1*К2*…Кn
где – K1,K2,…Kn коэффициенты усиления первого, второго и n-го каскадов.
|
|
|