Учебный Центр Your Company
Курс:  Электротехника
28 ноября 2006 18:40  CDExportPublisher  
Содержание
Перейти на предыдущую страницу Урок 8.2 Асинхронные машины
( Занятие 16 из 19 )

Конструкция асинхронных машин 

Асинхронные машины в настоящее время являются самыми распространенными машинами в народном хозяйстве. В основном они используются как двигатели, реже – как генераторы. На долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. Они широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах,  устройствах звукозаписи и т.п. Широкое распространение асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Основными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор (рис. 8.7) состоит из шихтованного магнитопровода (2), запрессованного в литую станину (1) . На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки (3). Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Начала и концы обмоток выводятся на наружную сторону станины, на клемную коробку. Начала фазных обмоток статора обозначаются заглавными буквами С1, С2, и С3, а концы соответствующих фаз буквами С4, С5 и С6.

                                                         

                                    Рис 8.7.                                                                                      Рис.8.8.

Фазы обмотки можно соединить по схеме ''звезда'' или "треугольник" в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют "звездой". Если же напряжение сети 220 В, то обмотки соединяют в "треугольник". В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 8.8) и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные, фазные иногда называются с контактными кольцами.

В микромашинах и машинах малой мощности чаще всего применяют короткозамкнутые роторы. В пазах таких роторов располагаются медные или алюминиевые стержни (2), соединяющиеся с торцов короткозамыкающими кольцами (1) и (3). Таким образом, обмотка короткозамкнутого ротора имеет вид беличьей клетки (рис. 8.9). 

В асинхронных машинах большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы (рис. 8.10). В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов. Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные и пусковые реостаты (5).

                                             

                                                                                  Рис.8.9    

                                              

                                                          

                                                                                       Рис.8.10.

 

На рисунках 8.11 и 8.12  показаны в разобранном виде двигатели- короткозамкнутый  и с контактными кольцами.

                                                                     

  Рис. 8.11. Асинхронный двигатель короткозамкнутым ротором в разобранном виде.
а
— статор; 6 — ротор; в — подшипниковые щиты; г — вентилятор; д — отверстия для входа и выхода охлаждающего воздуха; е — коробка, прикрывающая зажимы.

   

 

                                   Рис. 8.12. Асинхронный двигатель с контактными кольцами в разобранном виде.
а
— статор; 6 — ротор; в — подшипниковые щиты; г — вентилятор; д — отверстия для входа и выхода охлаждающего воздуха; е — коробка, прикрывающая зажимы; ж — контактные кольца, з—щеткодержатели и щетки                             

 

 

 

 

 

Следующий кадр







Принцип действия и режимы работы асинхронной машины 
Принцип действия АД (105 Kb)
Откройте прикрепленный файл.
Следующий кадр







Основные уравнения трехфазного асинхронного двигателя 
Основные уравнения трехфазного асинхронного двигателя (103 Kb)
Откройте прикрепленный файл.
Следующий кадр







Энергетическая диаграмма асинхронного двигателя 
Энергетическая диаграмма асинхронного двигателя (87 Kb)
Откройте прикрепдленный файл.
Следующий кадр







Электромагнитный момент и механические характеристики АД 
Электромагнитный момент (150 Kb)
Откройте прикрепленный файл
Следующий кадр







Способы регулированиячастоты вращения ротора асинхронного двигателя 
Способы регулирования частоты вращения (107 Kb)
Откройте прикрепленный файл
Следующий кадр







Запуск асинхронных двигателей 

Вопросы, связанные с пуском в ход электрических двигателей, имеют большое практическое значение. При их разрешении приходится считаться с условиями работы сети, к которой приключается двигатель, и с требованиями, которые предъявляются к электроприводу. Под электроприводом понимается устройство, состоящее из электродвигателя вместе с относящейся к нему аппаратурой и предназначенное для приведения во вращение рабочей машины (какого-либо станка, насоса, вентилятора, экскаватора, прокатного стана, конвейера и др.).

Для оценки пусковых свойств электродвигателя установлены следующие основные показатели:

  1. начальный пусковой ток Iнач или его кратность Iнач/Iн;
  2. начальный пусковой момент Мнач или его кратность Мнач/Мн.

Кроме того, в ряде случаев имеет значение продолжительность разбега двигателя вместе с приводимым им во вращение механизмом и иногда плавность разбега.

б) Двигатели с контактными кольцами.

 Двигатели с контактными кольцами пускаются в ход при помощи реостата, включаемого в роторную цепь и называемого пусковым. Соответствующая схема приведена на рис 8.20.

                                                                                                 

Рис 8.20. Схема пуска в ход трехфазного асинхронного двигателя с контактными кольцами (РМ — рабочая машина).

 

На 8.21 показано изменение вращающего момента при выключении ступеней пускового реостата за время разбега двигателя.

                                                                                  

Рис. 8.21. Кривые М = f (s) при различных сопротивлениях роторной цепи (зигзагообразная линия соответствует изменению пускового момента при выключении ступеней реостата во время разбега двигателя).

 

Двигатель с контактными кольцами, пускаемый в ход при помощи пускового реостата, обладает хорошими пусковыми характеристиками. Здесь за все время разбега мы можем иметь большой пусковой момент и тем самым сократить время разбега. При этом пусковой ток имеет относительно небольшое значение и, следовательно, подключение двигателя к электрической сети, особенно маломощной, не будет вызывать резких изменений режима ее работы.

Пусковые реостаты изготовляются из проволоки или ленты, обычно намотанной в виде спирали на фарфоровые столбики. Для проволоки или ленты берут металл повышенного удельного сопротивления (нихром, фехраль и др.), обладающий высокой износоустойчивостью, и иногда железо или чугун. Такие реостаты имеют воздушное охлаждение, если они предназначаются для частых пусков в ход, или масляное охлаждение. В последнем случае спирали помещаются в баке с маслом. Переключение ступеней реостата, присоединенных к контактам, помещенным на доске из изоляционного материала, производится при помощи ручки, скользящей по контактам.

Применяются также жидкостные пусковые реостаты, состоящие обычно из бака с содовым раствором и пластин, опускаемых в бак. Пластины соединяются со щетками, наложенными на контактные кольца.

Следует иметь в виду, что пусковые реостаты рассчитываются на кратковременную нагрузку, и поэтому их ступени нельзя оставлять на долгое время под током во избежание чрезмерного нагрева.

Иногда двигатели с контактными кольцами снабжаются приспособлением, позволяющим замкнуть кольца накоротко, когда выведен весь реостат, и при этом поднять щетки. Таким образом, устраняются потери на трение щеток о кольца и электрические потери в их переходных контактах. В последние годы от таких приспособлений отказываются, так как их применение удорожает двигатель и усложняет уход за ним.

При пуске в ход двигателя с контактными кольцами нужно до включения рубильника или масляного выключателя убедиться в том, что весь реостат введен в цепь ротора. После включения надо пусковое сопротивление выводить постепенно, чтобы стрелка амперметра, который должен быть включен в цепь статора, не отклонялась дальше допустимого значения.

Короткозамкнутые двигатели.

 Короткозамкнутые двигатели обычно пускаются в ход путем непосредственного включения их в сеть. Такие двигатели выполняются, как отмечалось, с роторной обмоткой в виде беличьей клетки.

Круглые пазы на роторе и соответствующие им круглые медные стержни в настоящее время применяются только для малых машин, причем и для таких машин более часто применяется алюминиевая клетка, полученная путем заливки пазов расплавленным алюминием. В малых машинах сопротивление r2 получается относительно большим, поэтому здесь и при круглых пазах создается достаточный момент Мнач. Что касается начального пускового тока, то в случае малых машин он обычно не имеет большого значения.

Для короткозамкнутых машин с алюминиевой обмоткой мощностью свыше 2 - 3 кВт пазам ротора придается форма, показанная на рис. 8.22, а.б.в.г. причем при больших мощностях (> 20 - 30 кВт) применяются тем более глубокие пазы, чем больше мощность машины.

                                                                                            

                                                                          Рис. 8.22. Пазы ротора.

 

Применение глубоких пазов на роторе улучшает пусковые характеристики короткозамкнутых двигателей, что вытекает из следующих рассуждений.

Представим себе, что стержень по высоте разделен на большое число слоев. Нижние слои сцепляются с большим числом индукционных линий, чем верхние слои. Поэтому их индуктивное сопротивление больше, чем верхних слоев. При большой частоте тока f2 = sf1 (например, при s = 1) индуктивное сопротивление отдельных слоев значительно больше их активного сопротивления, вследствие чего распределение тока по слоям будет определяться в основном их индуктивными сопротивлениями.

По мере возрастания частоты вращения частота f2 уменьшается и при номинальной частоте вращения имеет небольшое значение. Ток при этом практически распределяется равномерно по всему сечению стержня, так как его распределение теперь будет определяться в основном активными сопротивлениями отдельных слоев, на которые мы мысленно подразделили стержень. Следовательно, r2 автоматически уменьшится.

М.О. Доливо-Добровольский впервые применил для короткозамкнутых двигателей двойную клетку на роторе (1893 г.). Применяемые при этом пазы показаны на 8.23.

                                                                         

Рис. 8.23. Пазы ротора с двойной клеткой

В верхних пазах помещают стержни повышенного активного сопротивления, в нижних пазах — стержни с относительно малым активным сопротивлением.

Индуктивное сопротивление нижних стержней получается в несколько раз больше индуктивного сопротивления верхних стержней в соответствии с различием потокосцеплений тех и других. Потокосцепление нижних стержней определяется главным образом размерами прореза между верхней и нижней частями паза. Так как распределение тока между стержнями при больших скольжениях зависит в основном от их индуктивных сопротивлений, значительно превышающих их активные сопротивления, то ток вытесняется в верхние стержни, образующие клетку, называемую пусковой

При малых скольжениях распределение тока будет зависеть в основном от активных сопротивлений клеток. Ток при этом будет проходить главным образом по нижней клетке, которая называется рабочей.

Двигатели с двойной клеткой на роторе позволяют получить лучшие пусковые характеристики, чем двигатели с глубокими пазами на роторе, что достигается путем выбора надлежащих соотношений между параметрами верхней и нижней клеток. Поэтому в случае необходимости иметь короткозамкнутый двигатель с повышенным пусковым моментом при относительно небольшом пусковом токе его выполняют с двойной клеткой на роторе.

Применяется также пуск при переключении обмотки статора со звезды на треугольник, если при данном напряжении сети она должна быть соединена в треугольник.

При понижении напряжения, приложенного к обмотке статора, заметно уменьшается начальный пусковой момент, пропорциональный квадрату первичного напряжения. Поэтому пуск при пониженном напряжении применяется только в тех случаях, где не требуется большой начальный момент (например, для электропривода к вентилятору).

Многие мощные сети, имеющиеся на заводах и электрических станциях России, допускают непосредственное включение короткозамкнутых двигателей больших мощностей (на сотни киловатт).

Благодаря сравнительно небольшой стоимости, простоте конструкции, большой надежности в работе и удобству в обслуживании короткозамкнутые двигатели получили значительно большее распространение, чем двигатели с контактными кольцами.

 

 

Перейти к началу страницы страницы Далее: Синхронные машины Перейти на следующую страницу